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ABSTRACT

As progress in new sensor technology continues, increasingly high resolution
imaging sensors are being developed. HIRIS, the High Resolution Imaging
Spectrometer, for example, will gather data simultaneously in 192 spectral bands
in the 0.4 - 2.5 micrometer wavelength region at 30 m spatial resolution. AVIRIS,
the Airborne Visible and Infrared Imaging Spectrometer, covers the 0.4 - 2.5
micrometer in 224 spectral bands. These sensors give more detailed and complex
data for each picture element and greatly increase the dimensionality of data over
past systems.

In applying pattern recognition methods to remote sensing problems, an inherent
limitation is that there is almost always only a small number of training samples
with which to design the classifier. Both the growth in the dimensionality and the
number of classes is likely to aggravate the already significant limitation of training
samples. Thus ways must be found for future data analysis which can perform
effectively in the face of large numbers of classes without unduly aggravating the
limitations on training.

A set of requirements for a valid list of classes for remote sensing data is that the
classes must each be of informational value (i.e. useful in a pragmatic sense) and
the classes be spectrally or otherwise separable (i.e., distinguishable based on the
available data). Therefore, a means to simultaneously reconcile a property of the
data (being separable) and a property of the application (informational value) is
important in developing the new approach to classifier design. In this work we
propose decision tree classifiers which have the potential to be more efficient and
accurate in this situation of high dimensionality and large numbers of classes. In
particular, we discuss three methods for designing a decision tree classifier, a top
down approach, a bottom up approach, and a hybrid approach.

Also, remote sensing systems which perform pattern recognition tasks on high
dimensional data with small training sets require efficient methods for feature
extraction and prediction of the optimal number of features to achieve minimum
classification error. Three feature extraction techniques are implemented.
Canonical and extended canonical techniques are mainly dependent upon the
mean difference between two classes. An autocorrelation technique is dependent
upon the correlation differences.

The mathematical relationship between sample size, dimensionality, and risk value
is derived. It is shown that the incremental error is simultaneously affected by two
factors, dimensionality and separability. For predicting the optimal number of
features, it is concluded that in a transformed coordinate space it is best to use the
best one feature when only small numbers of samples are available. Empirical
results indicate that a reasonable sample size is six to ten times the dimensionality.






CHAPTER 1. INTRODUCTION

1.1 Preliminary Remarks.

As the progress in new sensor technology continues, increasingly high resolution
imaging sensors are being developed. For example, HIRIS, the High Resolution
Imaging Spectrometer, will have 192 spectral bands which gather data
simultaneously in the 0.4 - 2.5 micrometer wavelength region at 30 m spatial
resolution. AVIRIS, the Airborne Visible and Infrared Imaging Spectrometer, covers
the 0.4 - 2.5 micrometer in 224 spectral bands. These sensors give more detailed
and complex data for each picture element and increase the dimensionality of data.
The growth of dimensionality and the higher spectral resolution provides the
opportunity to identify a larger number of classes within a scene than in the past.

For high dimensional, multi-class pattern recognition problems, a decision tree
classifier (hereafter referred to as DTC) instead of a single layer classifier is the
most appropriate scheme, because a DTC divides the complex global decision-
making process in high dimensional spaces into a number of simpler and local
decisions at various levels of the tree. As a result, proper subsets of features at
each node can be chosen to improve the classification accuracy while at the same
time possibly reducing the required amount of computation.

A decision tree is a means for showing the relationship of intermediate decisions in
a complex decision process in order to reach a final decision. Decision trees
consist of three parts, the root node, intermediate nodes, and terminal nodes. The
root node has only descendent nodes while terminal nodes each have only a
unique ascendent node. Intermediate nodes have both descendent and ascendent
nodes. If an acyclic graph is defined to be one which contains no cycle, a tree is a
connected acyclic graph. A tree thus defined has the property that a path from the
root node to any given node is unique. Single layer classifiers test the degree of
membership of the unknown sample against all classes and finally assign the
unknown sample to one of those classes. Decision tree classifiers test the degree
of membership of the unknown sample against subgroups which contain several
classes at the intermediate nodes and assign the unknown sample to one of the
subgroups. If the subgroup is not one of the final classes, classification procedures
are continued until reaching the terminal nodes.
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Figure 1.1 A Simple Decision Tree

The primary objective of this work is to develop a DTC design procedure which
leads to a DTC that'is more efficient and more accurate in case of high
dimensionality, limited training set sizes, and large numbers of classes.

A second objective of this thesis is to find means to extract optimal features and
predict the optimal number of features in remote sensing situations. The estimation

‘of the optimal number of features is an essential part of the DTC design process as

the dlmensmnahty grows. Probability of correct classification is closely related to
design sample size, dimensionality, and noise.

1.2 A Review of Related Work

The DTC has been studied for a number of applications. Examples are remote
sensing, character recognition, blood cells classification. The presumed
advantages of the DTC are reported as computational efficiency and improvement
in classification accuracy with finite samples. Disadvantages of DTC are
complexity, error accumulation, and design difficulty for an optimal DTC.

The study of the DTC may be categorized into three phases: the design phase, the
feature selection phase, and the decision rule. However, to be truly optimal, these
are not sequential but must be simultaneously accomplished.

For the purpose of ideal design, Wu et al. [1] developed an evaluation function
which consists of a computation time factor and classification accuracy. The
classification error is estimated by assuming that the direct descendent nodes are
single layer classifiers. Kanal [21] defined two types of admissible search strategies



to obtain the optimal decision tree structure, namely S-admissible and B-
admissible which use a cost of path and risk function in a state space graph model.
In an S-admissible search, the risk function depends only on the features
measured along the path from the initial state to final state. In a B-admissible
search, the risk function depends on all features, not just those on the path to the
final state. Using these functions, it is impossible to evaluate successfully every
combination of tree structure to determine the overall optimal tree classifier.

For practical design purposes, minimizing the classification error is frequently
pursued at each node, although that procedure does not guarantee that the overall
structure will be optimal. For the same reason, computational efficiency is often
considered as an independent performance index.

Wu et al [1] and Swain and Hauska [8] suggested a histogram approach which
plotted means and covariances for all classes for each feature. A suitable boundary
was sought to separate the subgroups which might be homogeneous with a
particular feature. However, since this approach uses only one feature, the inter-
relationships with other features are disregarded.

You and Fu [13] designed binary trees by splitting a set of classes into two non-
overlapping subgroups at every node. The two subgroups are found by comparing
the measure of separability for different pairs of subgroups over various subsets of
feature space with fixed numbers of features. To reduce the possible combinations
of tree structures, they suggested two restrictions. The first restriction was to limit
the number of features selected at each node. For the sake of accuracy, the second
restriction was the size of the tolerable error probability at each node. However, if
the numbers of classes are large, the number of possible tree structures is still
large. In the case of limited training samples, the measure function itself may be
poorly estimated.

Sethi and Sarvarayudu [27] suggested a tree design based upon the mutual
information obtained about the pattern classes from the observation event X, which
can be written as

2 2 1Y
I(C;X) = 21" 2:1 P(Ci,Xj) logz{%%i)—)(&} (1.1)
i=1 j=

where C represents the set of pattern classes, C1 and C2 having a priori
probabilities p(C1) and p(C2). p(Ci, X)) is the joint probability of occurrence of Cj
and Xj and p(Ci|Xj) is the probability that the observation comes from class Cj given
the outcome Xj of event X. Let Pg be the probability of error allowed in recognition;
then the following inequality determines the limit on the equivocation H(C|X) of C
with respect to X;

H(CIX) <H(Pg) + Pg logz (n-1) (1.2)



where H(Pg) is the error entropy and m is the number of pattern classes. Since the
average mutual information can also be written as,

I(C;X) = H(C) - H(C|X) (1.3)
we obtain the following inequality,
I(C;X) 2 H(C) - H(Pg) - Pg log2 (n-1)

2
=- ) P(C)Iog,P(C) + P,log,P, + (1-P,)log,(1-P,) - P,log(n-1)

=l (1.4)

Equation (1.4) thus relates the probability of error and the corresponding minimum
value of average mutual information required for a recognition process. Their
method generated a paritional tree for a specified probability of error by
maximizing the amount of average mutual information gain or minimizing the
average error of recognition for the given size of tree. The above algorithm was
implemented by a non-parametric procedure.

Casey and Nagy [30] developed a binary tree for optical character recognition
using an information theoretic approach. The effectiveness of a node-by-node
design scheme is highly dependent on the rule by which pixels are evaluated for
assignment to a given node. The first pixel to be tested is predetermined for the root
node. A measure based on entropy is used for a pixel selection criterion. The rule
employed for pixel selection is to choose the pixel that minimizes entropy, i.e, the
one that maximizes the information gain. A priori class probabilities and class
conditional frequencies of individual pixels are estimated from labeled samples.
Their approach is a special case of binary tree character recognition.

Landeweered et al. [29] suspected that binary tree classifiers improved the correct
recognition rate compared with the application of single layer classifiers. A binary
tree was constructed in a stepwise, bottom-up fashion, such that in each step the
two classes with the smaller Mahalanobis distance were merged to form a new
group. Since their binary tree classifiers might not be the optimal tree structure in
some sense, they did not take a look at the improvement of correct recognition rate
compared with the result of the single layer classifiers in some cases.

For the feature selection phase, in the ideal case, feature selection should be
simultaneously considered with decision tree design parameters. Practically,
Swain and Hauska [8] chose a feature selection criterion based on pairwise
separability over all pairs of classes after designing the decision tree classifiers.

Muasher and Landgrebe [2] experimentally studied an effective feature ordering
technique in cases where the the number of training samples was limited in
classifying multivariate two-class normal distributions.



For the decision phase, parametric and non-parametric procedures may be used.
Maximum likelihood Gaussian classifiers are usually used at each node in a
parametric approach.

M. W. Kurzynski [28] dealt with the decision rules of tree classifiers for performing
the classification at each non-terminal node, under the assumption of complete
probabilistic information. For a given tree structure and feature subsets to be used,
the optimum decision rules were derived which minimized the overall probability of
misclassification.

When the classifier design is to be based upon finite sets of samples from the
various classes and features, the estimation of the class-conditional densities of the
measurement vector is necessarily a key step. These estimates are then used for
the classification. One might initially assume that as the dimensionality of the
sample vectors is increased, classification accuracy would generally increase
because the information available is increased. If the added sample vector
dimensionality does not contribute in any way to classification results, one might
suppose that the classification error rate should at least stay the same. In practice,
the performance of the classifier based on estimated parameters improves up to a
certain point, then begins deteriorating as further features are added.

In a Bayesian formulation, some priori densities on the parameter of P; are
assumed, and class-conditional densities Pj(x) can be calculated. On the other
hand, one can arrive at maximum likelihood estimates of the density function. After
obtaining the maximum likelihood estimates of the unknown parameters, Pi(x) can
be obtained by substituting those estimated values instead of true parameters.
Therefore, the classification performance depends on the estimation procedure,
and problems pertaining to the relationship between dimensionality and sample
size are in the context of the method of estimation.

Hughes [22] considered the behavior of a finite sample Bayesian classifier with
respect to increasing measurement complexity. Even if a Bayesian procedure is
used which is optimal in the sense that it minimizes the probability of
misclassification, one could get into trouble by using too many measurements
when the number of training samples is small. It was shown that if the
measurements are independent and binary [55], or first order nonstationary Markov
dependent and binary [56], then there wil be no peaking of performance in the
Bayesian context with respect to the measurement complexity for a finite sample
size [57].

When the approach to classifier design is non-Bayesian e.g. parameters are
estimated by maximum likelihood methods, peaking effects occur. While the
original Bayes’ rule is optimal, the decision rule that results from substituting the
maximum likelihood estimates of the parameters is no longer optimal. The errors
caused by the non-optimal use of added information overrides the advantages of
extra information. Foley [11] investigated the design set error rate for a two class
problem with multivariate normal distributions, and derived it as a function of the



sample size per class and dimensionality. The design set error rate was compared
to both the corresponding Bayes error rate and test set error rate. It was shown that
the design-set error rate is biased below the true error rate and the test-set error
rate is biased above the true error rate of a classifier when the ratio of sample size
to feature size is small. Jain [58] showed that when features have multinomial or
univariate Gaussian distributions, the estimate of the Bhattacharyya distance is
biased and consistent. The bias and the variance of the estimate are not only a
function of the number of training samples but also depend on the true parameters
of the densities.

1.3 Problem Statement

In applying pattern recognition methods in remote sensing problems, an inherent
limitation is that there is almost always only a small number of training samples
with which to design the classifier. The growth in both the dimensionality and the
number of classes is likely to aggravate the already significant limitation of training
samples. Thus, ways must be found for future data analysis which can perform
effectively in the face of large numbers of classes without unduly aggravating the
limitations on training.

Until now, decision tree classifiers for remote sensing have been designed by only
considering one property of the data, that of separability. In that case, the final
decisions do not necessarily coincide with classes of informational value. In
addition to being adequately exhaustive, the requirements for a valid list of classes
for remote sensing data are:

1. The classes must each be of informational value (i.e. useful in a
pragmatic sense). :

2. The classes must be spectrally or otherwise separable (i.e.,
distinguishable based on the available data).

Therefore, a means to reconcile a property of the data (being separable) and a
property of the application (informational va!ue) is the main objectlve in developmg
a new approach to tree deSIgn

ln deSIgnmg the classmer one wouId Iuke to know how many features one should
use to maximize the classification accuracy. The number of features, the number of
samples, and the correct classification accuracy are related in a complex fashion.
In remote sensing, the reflected and emitted electromagnetic energy of each pixel
of a scene in a number of wavelength bands is measured by a multispectral remote
sensor system mounted on board an aircraft or spacecraft. The output of the sensor
system for a given scene pixel may be represented as a point in a multidimensional
space. The number of training samples is frequently limited because it is expensive
to accumulate the information by which to label many samples. In the case of
limited training samples and multidimensional space, the estimates of the first and



second order statistics cannot accurately depict all the information which is
contained in the data. In particular, the estimate of the covariance matrix may be
poor. Therefore how to relate the inaccuracy of estimate with classification error
directly is another objective of this work,

1.4 Qutline of the Report

To obtain an optimal DTC, one must consider three components simultaneously,
which are the tree structure, feature extraction, and the decision rule. The chosen
criterion for tree structure results from the kind of decision rule selected at non-
terminal nodes for the specific application. Also, a criterion for feature extraction will
be chosen based upon the decision rule. Therefore, once a decision rule is
determined, both a criterion for tree structure and for feature extraction can be
chosen to obtain the best-performing tree structure and best classification results.

In chapter 2, three methods for tree design, the top down, bottom up, and hybrid
approaches, will be discussed. In a top down approach, the entire feature space is
sequentially subdivided into increasingly local decision regions. Suppose that we
decide to use the maximum likelihood rule as the decision rule; we may then use
clustering at each non-terminal node to divide the data into appropriate subgroups,
and we might select the sum of squared error criterion as a clustering criterion for
the tree structure. Since there is no information about the covariances,
minimization of Euclidean distance is used.

In a bottom up approach, just the opposite procedure from the top down method is
pursued. Joining of local decision regions to make increasingly global decision
regions is used. Since we have the estimated mean and covariance of
informational classes, the Bhattacharyya distance may be chosen as the criterion
for the tree structure. In the hybrid approach, top down and bottom up approaches
are sequentially used to achieve the combined effect of the two approaches. The
normalized sum of squared error for top down and the Bhattacharyya distance for
bottom up are used sequentially as the criteria for tree structure.

In chapter 3, two feature extraction methods, canonical analysis and extended
canonical analysis, are reviewed. Also, another feature extraction method,
autocorrelation analysis, is proposed.

In chapter 4, a risk function is presented for estimating the error rate due to small
numbers of design samples which cause the variability of estimated parameters.
Results show that if the dimensionality is increased without increasing the
separability between classes, the incremental error is increased by a factor of the
square of the dimensionality. On the other hand, if the dimensionality is increased
with separability as usual, the incremental error is simultaneously affected by two
factors, dimensionality and separability. An optimal number of features which give
the smallest risk value (or error rate) is predicted. Also, a relationship between error
rate and the estimated decision boundary is studied empirically.



In chapter 5, experimental results are presented which show comparisons between
trees, and between the single layer and a tree classifier, DTC for multisource data,
and feature selection are described. It is found that a hybrid DTC with the best
single feature in transformed coordinates has better performance compared to
other methods such as a single layer classifier, top down and bottom up DTC's.

In chapter 6, the final conclusions are summarized.



CHAPTER 2. TREE CLASSIFIER DESIGN

2.1 Introduction

Optimal DTC's have been studied previously [1,21]. However, the existing methods
for tree design, e.g., use of an evaluation function or admissible search, are not
always feasible since the complete conditional density functions are often not
available and a very large amount of computation time would be needed to
evaluate all combinations of the tree classifier parameters. Practically, the methods
of minimizing the classification error at each node are implemented to obtain
locally optimum results, and the overall performance are not globably optimal [13].

When a remote sensing data set is categorized by partitioning the measurement
space (or feature space) into non-overlapping decision regions, spectral classes
which are discriminable because the multispectral properties of the corresponding
ground covers are different, are defined. Remote sensing is successful if these
spectral classes coincide with informational classes, i.e., classes of ground covers
which are meaningful, such as crop species, major land uses, soil types, etc [9].

To be a valid class, a distribution must be simultaneously of informational value
and separable from other classes. Supervised procedures can guarantee the
former, but not the latter. Unsupervised procedures can provide the latter, but do
not guarantee the former. Thus, a practical classification scheme for the DTC must
contain both procedures in such a way that the simultaneity of satisfaction is
guaranteed.

As far as DTC design is concerned, there exist only alternatives which are top
down or bottom up approachs. Terminal classes must be both separable and of
informational value. Non-terminal nodes are not required to be classes of
informational value, but they must still be separable. Thus clustering, which insures
separability, may be used in a top down approach, while correspondence with
training sets is only required at the bottom and thus is related to a bottom up
approach.

In the DTC literature {1,8,13,21,29], the top down approach has most often been
studied. Only when the informational classes are easily discriminated in
multispectral data, can the unsupervised classification of top down analysis be
expected to produce reliable results. The most critical problem which occurs in the
unsupervised top down analysis is terminal classes which do not coincide with the
informational classes.
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As stated previously, tree structure, decision rules, and optimal feature sets should
be simultaneously considered to obtain an optimal DTC, however, due to the
complexity of the problem, some compromise with respect to absolute optimality is
appropriate. For a parametric approach, the decision rule may be selected first
because the criterion for designing a DTC is determined by the decision rule. For
our work here, the binary tree is chosen as a DTC structure, since any tree can be
reduced to a binary tree, and the most effective feature subsets can be obtained for
a binary tree. In order to achieve the other requirements of terminal classes of
informational value and spectral separability, a hybrid DTC will be proposed. We
shall begin by investigating top down and bottom up approach approaches for
comparison purposes, and because certain of their characteristics will be needed
in the hybrid scheme.

2.2 Top Down Approach

A complete DTC can be designed in a natural fashion by first defining a structure
for the root node. Next, for each subset associated with the root node, it is
necessary to define another node which performs a further decomposition into
smaller subsets. In a top down approach, a clustering algorithm may be used to
obtain two subgroups at each node. The initialization and the separation criterion
are two important factors for clustering.

First, we shall consider the initialization method for clustering. How to determine
the initial cluster centers is an important factor because the clustering results differ
depending on the initial cluster centers. MacQueen [46] chose the first k- points in
the sample as the initial k- cluster mean vectors. Beale [47] started with a trial value
of k- larger than was thought necessary, and set up cluster centers regularly
spaced at intervals of one standard deviation on each variable and then reduced
the number of groups until a criterion based on the residual sum of squares is
satisfied.

Another common way for choosing initial cluster centers is as follows. Let x,, X wer s
X, be n- sample vectors which are g- dimensional, and assume they are to be
grouped into C- classes. Let ¢; u;, and s; (all g-dimensional vectors) be the ith
cluster center, it" cluster mean, and it cluster standard deviation, respectively, for
the ith cluster. To establish an initial set of cluster centers, compute the mean vector
m and variance vector s2 for the entire set of n- sample measurement vectors. A
rectangular parallelepiped, which usually will contain a large percentage of the
measurement vectors, has edges oriented parallel to the coordinate axes and
given by myts,, ..., mjts;, ..., mgts.. The initial cluster centers are chosen to be

uniformly spaced along a principal diagonal of this parallelepiped [54].

Next, the criterion for clustering should be considered. The sum of squared
error(SSE) criterion is defined by
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SSE=Y ) (x-my)’ (x-m) (2.1)

where m, is the mean of the it cluster and x € C; is a pattern assigned to the i'"
cluster. SSE is the cumulative distance between each point in the data set and the
mean of the cluster to which that data point is assigned. To minimize the sum of
squared error as a clustering criterion, each point (or pattern) should be assigned
to the cluster which has minimum Euclidean distance from that point. This squared
error can be expressed in many ways, such as the sum of the within and between
class squared errors used in discriminant analysis [6]. The minimization of within
class or maximization of between class squared error is identical to minimization of
the sum of squared etrror criterion.

For for our method of designing the binary DTC, the mean vector m and variance
vector s2 for the whole training set are computed to establish the two initial cluster
centers. One initial cluster center is assigned to a g-dimensinal vector, m,+0.5s,, ...

, m+0.5s;, ..., m_+0.5s,. Another initial cluster center is assigned to another g-
dimensional vector, m,-0.5s, ..., m-0.5s;, ..., m-0.5s, as shown in Figure 2.1.
X2
 aatin
v’ \
m2+.5s2 ,/ /
2 -
m 7 //
m2-.5s2 ¢ e
.\\&_ _'_,/’/

x1
mi-5s1 m1 mi+.5s1

Figure 2.1  Initialization of Two Cluster Centers

Once the initial cluster centers are established, each training sample is assigned to
one of two cluster centers which minimizes the Euclidean distance to the training
sample. After all training samples are allocated to the nearest cluster center, the
new class mean and class variance vectors for each cluster are computed, and
those class mean vectors become new cluster centers. Again, all training samples
are assigned to the new cluster center which minimizes the Euclidean distance.
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When the number of training samples which are moved from one cluster to another
cluster passes through a minimum and begins to increase, the clustering
procedure is complete as shown in Figure 2.2.

Choose two initial cluster centers -

\

Change = Number of training samples + 1

o

)[ Count = 0

Assign training samples to one of cluster centers

If a sample is assigned to another cluster
Count = Count + 1

Change = Count

Compute new cluster centers

Figure 2.2  Clustering Algorithm

The clustering results produce two subclusters. After training samples for each
class are compared to two subclusters, each class is assigned to one of two
subclusters. Then each subcluster becomes a descendent node. Each subgroup is
tested to determine if it is an informational class. If the subgroup is an informational
class, the subgroup does not have a descendent node at the next level. If not, the
whole clustering procedure is repeated for each subgroup as shown in Figure 2.3.

If the number of training samples from a class is split between two subgroup almost
equally, that class is referred to as an overlapping class. If there is an overlapping
class, that class is assigned to both subgroups. Whether a class is deemed an
overlapping class or not is determined by the designer.
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(Start with root node)

Compute mean and standard deviation

as initial cluster centers for assigned node

Clustering produces two subclusters

Compare training samples to subclusters

A\/4
Assign classes to one of subclusters

Each subcluster becomes descendent node

Yes

A\
Check if descendent node consists of more than 2 classes |<——
No
Check if descendent node consists of 2 classes
No Yes

Divide descendent node into infomational classes

—)7Assign descendent node to informational class

e N

Check if every final node is informational class
Yes

Figure 2.3 Top Down Design Algorithm

No
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2.3 Bottom Up Approach

The bottom up approach begins with distinct informational classes as compared to
overlapping informational classes which the top down approach sometimes
produces. In the top down approach, the decision boundary which has the largest
distance measure between groups is chosen since the effect of the error rate of the
root node is minimized. In the bottom up approach, once the criterion values such
as separabilities between every class pairs are computed, the two classes which
have the smallest criterion value, join together and become a new class, i.e., the
new subgroup at the next higher level.

In obtaining the new subgroup, the updated criterion values between the new
subgroup and the remaining classes are needed. When the updated criterion
values are determined from the previous criterion values, this will be referred to as
a static minimum criterion spanning tree procedure. On the other hand, if the
updated criterion values are newly computed, this will be called a dynamic
minimum criterion spanning tree procedure.

2.3.1 The static minimum spanning tree

A graph G is an ordered pair (V(G), E(G) ) consisting of a non-empty set V(G)
which represents the vertices and a set £(G) which represents the edges.

Definition 1. Two vertices u and v are said to be connected if there is a path
in G.

Definition 2. An undirected tree is an undirected graph which is connected
and acyclic. A rooted undirected tree is an undirected tree in
which one vertex is distinguished as the root. A spanning tree is
an undirected tree that connects all vertices in V.

Lemma 1. Let G =(V, E) be a connected, undirected graph and S=(V, 7) a
spanning tree for G. Then,
a)forallv and v in V, the path between u and v in S is unique,

and,
b) if any edge in E - T is added to S, a unique cycle results.

Proof) See [39)].

Lemma2. Let G =(V, E) be a connected, undirected graph and c a cost
function on its edges. Let {(Vy, Ty), (V2, T2), ........ , (Vi, Tx) } be any

_ kK
spanning forest for G with k> 1. Let T=Y; T, Suppose e = (v,
w) is an edge of lowest cost in E-T such that ve V,and w € V,.

Then there is a spanning tree for G which includes T U {e} and is
of as low a cost as any spanning tree for G that includes T.
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Proof) See [39].

By Lemma 1 and 2, If G = (V, E) is a connected, undirected graph with a criterion
value mapping edges to real numbers, a spanning tree is an undirected tree that
connects all vertices in V. The cost of a spanning tree is just the sum of the cost of
its edges. A spanning tree of minimum criterion value for G is the static minimum
spanning tree.

The set of classes to be classified may be considered as a set of classes in a
multidimensional space. The distance measure for every pair of classes is
calculated. The set of classes and the distance measures are represented by a
complete valued graph in Figure 2.4 which is a connected, undirected graph. A
spanning tree can be extracted from this complete valued graph. Among the
spanning trees, the minimum spanning tree is of particular interest. The static
minimum spanning tree can be realized by the following single linkage method.
The cost of its edge is represented with the similarity measure.

Class 1

Class 5 Class 2

2.0 7.0
12.0
9.0

Class 4 Class 3

Figure 2.4 Complete Valued Graph

Classes are combined according to the similarity measure between their nearest
members. Each matrix decreases by one after joining two classes. For the single
linkage (nearest neighbor) method, then, new similarity measures between
subgroups can be obtained by the similarity measure between their closest
classes.
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Suppose five classes are to be classified, and the matrix of distances between the
classes is as follows:

0 60 10 50 80 |
6.0 O 70 40 30
D=| 1.0 7.0 0 9.0 120
50 40 9.0 0 2.0

| 80 30 120 2.0 0 _

In this matrix the element in the ith row and it" column gives the distance, di,
between classes i and j. The minimum dij is d13 = 1.0 so that classes 1 and 3 are
joined to minimize the error rate at the upper levels and the new classes are (1, 3),
(2), (4), and (5). New distances between these subgroups are obtained from D as
follows:

d(2)(1, 3) = min {d21, d23} = d21 = 6.0,
d(4)(1, 3) = min {d41, d43} = d41 = 5.0,
d(5)(1, 3) = min {ds1, ds3} = d51 = 8.0,

and we may form a new distance matrix Dy giving inter-individual distances, and
group-individual distances.

0 6.0 50 8.07]
60 0 40 3.0
1[50 40 0 20
| 80 30 20 0

The smallest entry in D1 is now d4s = 2.0 and so classes 4 and 5 are combined and
new subgroups become (1, 3), (2), and (4, 5), and distances now become

d(1, 3)(4, 5) = min {d(4)(1, 3), d(5)(1, 3)} = d(4)(1, 3) = 5.0,

d(2)(4, 5) = min{d42, ds2} = ds2 = 3.0.

These may be arranged in a matrix D,,
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0 60 50
02 =60 0 30
50 30 O

The smallest entry now is d(2)(4, 5) = 3.0, so that class 2 is joined to subgroup (4,
5) and the subgroups are now (1, 3) and (2, 4, 5). Finally, the combination of the
two subgroups at this stage takes place to form a single group containing all five
classes. The tree showing these processes is shown in Figure 2.5

(1,2,3,4,5)
N
(1,3) (2,4,3)
VNN
1 3 2 4, 5)
N
4 5

Figure 2.5 Decision Tree Corresponding to Single Linkage

The complete linkage (farthest neighbor) method is exactly the opposite of the
single linkage method in that the distance between two subgroups is defined in
terms of the largest dissimilarity between a member of ¢y and a member of ca,
namely

d(c1)(c2) = max {dij iec,je °2} 2.2

Using this technique for the distance matrix D, we begin as with the single linkage
method by combining classes 1 and 3. The distances between this subgroup and
the three remaining individuals 2, 4, and 5 are obtained from D as follows:

d(2)(1, 8) = max {d21, d23} =d23 = 7.0,

d(4)(1, 3) = max {d41, d43} = d43 = 9.0,

d(5)(1, 3) = max {ds1, ds3} = ds3 = 12.0,
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—

0 60 10 50 8.0
60 0 7.0 40 3.0
D=| 1.0 70 0 9.0 120
50 40 90 0 20
_80 3.0 120 20 0 _|

The new distance matrix is

0 7.0 9.0 120
7.0 0 40 30
! 9.0 40 O 2.0
120 3.0 2.0 0

The smallest entry is dys, so that classes 4 and 5 are joined and new subgroups
become (1, 3), (4, 5), and (2), with

d(1, 3)(4, 5) = max {d(4)(1, 3), d(5)(1, 3)} = d(5)(1, 3) = 12.0,
d(2)(4, 5) = max {ds2, dsp} = daz = 4.0.

and
0 7.0 12.0
02 =| 7.0 0 40
12.0 4.0 0

The smallest entry is d(2)(4, 5) = 4.0, so that class 2 is joined to subgroup (4, 5) and
the subgroups are now (1, 3) and (2, 4, 5). The final result is shown in Figure 2.6.
which is seen to be identical in shape to that resulting from the single linkage
method incidentally .
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(1,2,3,4,5)

/N

(1, 3) (2,4,5)
1 3 2 (4,5)
4 5

Figure 2.6 Decision Tree Corresponding to Complete Linkage
2.3.2 The dynamic minimum spanning tree

The Bhattacharyya distance measure is selected as the criterion for the bottom up
DTC. The Bhattacharyya distance measure for two Gaussian classes is as follows.

i T +X
B=§(m1-m2) [ 1 2] (m,-m,) +-In l
2 (2.3)

where m; is the mean vector of class i and X ; is the covariance matrix of class i.
The first term of the Bhattacharyya distance reflects the separation due to mean
differences between two classes and the second term reflects the covariance
difference. The Bhattacharyya distance measure is more closely related with
classification accuracy than other measure functions such as divergence[50].

In the static minimum spanning tree, the mean and covariance vectors for each
class are computed just one time throughout the design of the decision tree
classifier. But new subgroups based upon combining two classes or subgroups
have new mean and covariance matrices. Two classes are combined according to
the similarity measure between their nearest members. Groups or classes are
decreased by one. After combining the smallest Bhattacharyya distance pair, the
new mean and covariance matrices are obtained. Then the new Bhattacharyya
distances are computed between the new subgroup and the remaining classes or
subgroups. The above procedures are continued until all classes become two
subgroups.
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Start

Compute mean and covariance for each informational class

Comphte Bhattacharyya distance for every pair of classes

Combine two classes which have the smallest distance

Two classes become ohe combined class at ascendent node

No

Check if number of classes is less than 3
Yes

( Complete )

Figure 2.7 Bottom Up Design Algorithm

2.4 Hybrid Approach

To be a valid class, a class must be simultaneously of informational value and
separable from all other classes. The top down approaches make use of the
characteristic of class separability while the bottom up approach starts with
informational classes. The hybrid approach uses bottom up and top down methods
sequentially.

The bottom up approach may produce subgroups. The number of subgroups is
determined by the designer. Those subgroups may give the subgroup information
which is used for the top down approach. In the top down approach, how to use the
subgroup information which is generated by bottom up approach is dependent
upon the algorithm which is applied for the top down approach.

In nonsupervised classification algorithms, initialization information has a role in
determining the final results. Correct initial information facilitates obtaining the
correct results. The bottom up approach is used as the method to obtain this
initialization information (mean vectors and covariance matrices). For the hybrid
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approach, the normalized sum of squared error (NSSE) criterion, defined as
follows, is used.

NSSE = 3, 3 [(x - m)TEr ! (x - mj)+In|=i] (2.4)

The sum of squared error criterion produces the spherical clusters [37]. However, if
the clusters are not spherical in shape, variance effects must be accounted for. In
the normalized sum of squared error criterion, variance effects are considered. In
the hybrid approach, subgroup means and covariances are obtained from bottom
up results.

The hybrid design, thus proceeds as follows:

1. Divide the entire data set into two subgroups for descendent nodes by the
bottom up approach.

2. Compute the mean and covariance vectors of the two subgroups and re-divide
the classes into two subgroups using the Normalized Sum of Squared Error
Clustering (Appendix B).

3. If the separated subgroups are informational classes, design is complete.
Otherwise, return to step 1 for each subgroup which is not an informational class.

There are several advantages to the hybrid approach. It is more likely to converge
to classes of informational value because the initialization provides early guidance
in that direction while the top down approach does not guarantee such
convergence. It can use overlapping classes while there are no overlapping
classes in the bottom up approach. Covariance information can be applied in the
hybrid approach to separate non-spherical subgroups.

2.5 Tree Classifier for Multisource Data

Modern data sets include not only spectral data but may also include other types of
data, such as forest type maps, ground class cover maps, radar data, and
topographic information e.g., elevation, slope, and aspect data. These are called
multisource data. Such data are not necessarily in common units, and therefore
scaling problems may arise. Further, the data may not even be numerical. As a
result, multisource data cannot be modeled conveniently by multivariate
distributions, thus conventional multivariate classification methods cannot be used
satisfactorily in processing multisource data. Several methods have been
proposed to classify the multisource data.

Hutchinson [51] proposed ambiguity reduction techniques. If the data are classified
based on one or more data sources, the remaining ambiguities from the results of
classification are resolved by other sources.
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Figure 2.8  Hybrid Design Algorithm

No




23

The stacked vector approach, which consists of a concatenation of all components
of data sources, has also been used [52]. This method is straightforward and
simple, however, the method is not applicable when the various sources cannot be
modeled by the multivariate distributions.

Swain, Richards and Lee [53] proposed a statistically based analysis. In general
there may not be a simple relation between the user-desired information classes
and the set of data classes available. One of the requirements of a multisource
analytical procedure is to devise a method by which inferences about information
classes can be drawn from the collection of data classes. They defined a set of
global membership functions that collect together the inferences concerning a
single information class from all of the data sources. They use the global
membership function in the nature of a discriminant function, so that a pixel is then
classified according to the usual maximum selection rule. In that case, the inter-
source independence assumption is often made, however, that assumption is not
usually fully satisfied in the case of real data.

In the DTC approach, each source may be considered separately, something not
possible in a single layered scheme. The basic idea is that the optimal source and
classification rules are determined to minimize the classification error at each node.
To separate the subgroups evaluation functions are defined as a function of
minimum error and minimum overlap. The overlap is defined as follows;

d=2ni-n

i=1 (2.5)

where n;is the number of samples of class i. The evaluation function is given by

E, = EPe(j) + od
je1

where a is weighting factor.

(2.6)

For a hybrid DTC with a Gaussian maximum likelihood rule, two initial subgroups
can be obtained by the bottom up approach with respect to each source. The
subgroup consists of more than one informational class. To obtain new subgroups,
the Normalized Sum of Squared Error is applied for two clusters with respect to
each source. To determine the best source, the evaluation function for each source
is computed by evaluating the results of two clusters. Every node has the
appropriate source to minimize the evaluation function. If a subgroup is not an
informational class, the hybrid design procedure is applied again to obtain two
descendent nodes. :
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2.6 Computational Efficiency

Computational efficiency is potentially one of DTC's advantages over a single layer
classifier. As far as the number of decisions is concerned, a DTC needs less
numbers of decisions than a single layer classifier. When a DTC is well balanced,
only (logz n) comparisons are required if n classes are given. Even though a DTC

is completely unbalanced, Ln—t%léul comparisons are required. This is less than

the (n-1) comparisons are required in a single layer classifier, and therefore a DTC
is expected to have better computational efficiency.

To improve the classification accuracy in the limited training sample situation, a
reduced number of features may be used in transformed coordinates. In a DTC, (n-
1) transformations of a test sample are needed while in a single layer classifier,
only one transformation of a test sample is required. In other words, a DTC needs
less comparisons but more mappings while a single layer classifier requires more
comparisons but less mapping. Therefore, neither of the two classifiers always has
superior computation efficiency.
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CHAPTER 3. FEATURE EXTRACTION

3.1 Hughes Phenomenon

Hughes[22] showed that recognition accuracy can first increase as the number of
measurements (or features) increases. However, in the presence of a limited
training sample size, as the dimension of the data increases beyond the optimum
value the classification results decline.

If there were no such dimensionality phenomenon, the single layer maximum
likelihood classifier (assuming proper prior class probabilities) would provide better
performance than the any other DTC because the conventional Bayes classifier
gives the minimum classification error.

However, when the number of training samples are limited, the Hughes
phenomenon, i.e. the dimensionality problem, must be considered. In such cases,
the conditional density functions are incorrectly estimated because of the lack of
adequate training samples. The poor estimates cause complex decision boundary
to be biased. A properly designed DTC may have better performance than a single
layer classifier because the decision boundaries in @ DTC are much simpler than in
a single layer classifier.

In most DTC's, untransformed subsets of features are used since a reduction of
dimensionality is required to increase the classification accuracy. A typical
procedure might be to calculate the pairwise Bhattacharyya distance or divergence
at each node, then the subsets of features having the largest distance are selected
for dimensionality reduction. Since the estimated means and covariances
themselves are randomly biased in the limited sample situation, a better way to
pick the best subsets of features is required.

3.2 Canonical Analysis

Fisher's suggestion[37] was to look for the linear function which maximizes the ratio
of the between class scatter to the within class scatter. Canonical analysis finds a
set of linear combinations of the variables whose values are as close as possible
within classes and as far apart as possible between classes. In canonical analysis,
within-class and between-class scatter matrices are used to formulate a criterion of
class separability.
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A within-class scatter matrix shows the scatter of samples around their class mean
vector m;, and is expressed by

m
Sw = 21 P(Wi) E{(x—m;)(x-m;)T|wi}
I=

m
= 21 P(Wi) X (3.1)
&

The matrix Sy is proportional to the sample covariance matrix. A between-class
scatter matrix is given by

m
Sp = 2% P(Wi) (mj—mo)(mj-myg)T (3.2)
|=
m
mo =E{x} = > P(Wj) m; (3.3)
i=1

rank(Sp) = m-1
rank(Sw1 Sp) = m—1

where m; is the mean of ith class and m, is the global mean. All these scatter
matrices are invariant under coordinate shifts. We define the ratio of the between
class scatter to the within class scatter as follows:

dT Sy d
d7TS, d (3.4)

The vector d, which maximizes the ratio dTx, is called the Fisher's linear
discriminant function or the first canonical variate.

The spectral decomposition allows us to express the inverse of a square matrix in
terms of its eigenvalues and eigenvectors, and this leads to a square root matrix.
Let Sy be an n by n positive definite matrix with the spectral decomposition

< T
S w= z li e e;.
i1
Let the normalized eigenvectors be the columns of matrix P =[ ey, €, ... , e, ] .
Then
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n
T T
S, =z’7kieiei =P AP

= (3.5)
-l10 ... 07
012 ... 0
where S, = with lizo.
| 0 ... 0|
T 4 B
S,=P A P=Z'7C° eiT
mt (3.6)
1 n T 1
2 _ T_ 2
sw _Z\/Ti eiei =P AP
i=1 (3.7)

-1
Let A1 2 A2 2 ... 2 As 20 denote the nonzero eigenvalues of Sw Sy and e, e, ..., €
the corresponding normalized eigenvectors where s is less than or equal to m and
n - 1(m is the number of classes and n is dimension of the matrix or the total

number of features). The symmetric square root matrix

1 n 1
2 _ T_ T 2
Sw _Z\/—k_ieiei_p/\ P

=1
and its inverse

L

s, =P A%P
11

d's,d =d s_s’d 3.8)
11 11

T T2 2 2 .2

d's . d=-dsis’ss,’s,d 9)

1

2

Let be @ =Swd then
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1 1

T T 2 2
d s d _a Sw S,S, a

T - T
ds,d aa (3.10)
Finally, the problem reduces to maximizing equation (3.10) with respect to a. This

is the so called Rayleigh's quotient. From Rayleigh's principle[40], the maximum of
1 1

the ratio is x1 which is the largest eigenvalue of sw"’ sb sw2 when a is equal to e;.

When a is equal to eigenvector ez, which is orthonormal to e4, and corresponding
to Ao, 8 maximizes the ratio secondarily. Therefore, A is the kth largest value which
corresponds to eigenvector ey.

|
S,’S, S, e=\e

(3.11)

A

L R
2 -1 2 -1
S, S, e=S, S, (S, e)=8, §,d=2d

2. .2
Sw Sw (3.12)

- The eigenvector d; which corresponds to eigenvalue 2, is directly obtained from %.
w

The eigenvector d; is called the ith canonical variate. If we have only two classes
the ratio has only one nonzero eigenvalue. The other n-1 features do not
contribute to the ratio. The final solution for two classes is

-1
d=S, (m-m,) (3.13)

This is also called Fisher's linear discriminant function which has the maximum
ratio of between-class scatter to within-class scatter.

3.3 Extended Canonlical Analysis

The following method was developed by Foley and Sammon[12]. In the two class

o4(mq - mp)

problem, Fisher's vector is given by dy = S where «, is chosen such

w
that d1Td{ = 1. The next best direction can be found for maximixing Fisher criterion
subject to the constraint that d, and d, are orthogonal. Using the method of
Lagrange multipliers, we wish to maximize the Fisher criterion subject to the
constraints that di'd, =0 fori=1,2,...,n-1. Let C be
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2
;
{dn(m -m2)} T T

A did, - -Adid

d,S,4, (3.14)

C=

Setting the partial of C with respect to d, equal to zero,

2
2K (m -m)-K28,d -2d -...-a d =0 (3.15)
T
d,(m -m,)
where K= ———— . Therefore,
dnswdn
A x
1 -1 1 -1
d =—--S8 [(m1'm2) d- .. d 1]
"KWY 2K 2K (3.16)
7»
Applying the constraints, and letting B = 27 and s = dS d , then
SqiBy +S1oBa+ .-+ Syn B =170y
S“B1 +...+ Si(n _1)Bn_1 =0
. S(n_1)1B1+...+S(n_1)(n_1)B(n_1)=o (317)

T
Let BT =[By...B,. 4], then B = S [ a 0. 0] . A recursive definition for the nth

discriminant vector is

—

Y

] a1l o
d, =S, q (M-Mm)-[d...d IS | ~ |p

L — = (3.18)
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3.4 Autocorrelation Analysis

The Fisher concept can be applied to an autocorrelation matrix. In a two class
problem, the criterion which maximizes $; and minimizes S, simultaneously or

vice versa can be defined. An autocorrelation matrix is defined by

_ T
Si = }:i +mm, (3.19)

d; Ts.d
The criterion function is defined by r "c—iT_Sld_ or —-r—?'—L The optimally separable
2

feature set is a feature set such that S1 is mmlmazed and S» is maximized or vice
versa after the transformation. The ratio r is maximized by the selection of feature d

if gar_ = 0. That equation can be reduced to (St - rSz)d = 0 which is called a

generalized eigenvalue equation.

(s..;_‘s1 _R)d=0

| (3.20)
s.'s[d ...d]=Rd ...d] 3.21)
We can diagonalize two symmetric matrices as
D'S,D =1 5.22)
D's,D =R (3.23)

where D and R are the eigenvector and eigenvalue matrices of §,7'S,. To find the
orthonormal eigenvectors of S,7'S, as

s:'s,d =rd and d'd =5 |
T P (3.24)

We should change the scale of d; to satisfy
24" _
a°d S.d =1 (3.25)

Therefore, the ith orthonormal eigenvector is
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- —i——; (3.26)
(diTS1di)2
For each discriminant vector d;, there corresponds an r;, given by
diTS1df (3.27)

"= d{TS.d;

Each r; represents the value of the discriminatory criterion for the corresponding
discriminant vector d;. The discriminant vectors can be ordered according to their
respective ratio values such that

r12r22...2rq20 (3.28)

However, we want to maximize the relative ratio between S, and S, which is
greater than one. If an r; is less than one, we should use the inverse value of rito
compare the relative ratio. We may define the relative ratio as follows:

q I’q-1 i+1 (3‘29)

The best feature or effective basis function for both classes is the eigenvector
corresponding to the largest relative ratio. The autocorrelation analysis can be
used in place of canonical analysis when the mean difference between two classes
is almost zero.

When the mean difference is zero canonical analysis and extended canonical
analysis can not be used since the feature vector is defined by the mean difference.
Autocorrelation analysis is useful when the mean difference is small and the
covariance difference is dominant while canonical analysis and extended
canonical analysis are more effective than the autocorrelation analysis when the
mean difference is dominant. After extracting features, the mean difference and the
covariance difference in a subspace may be checked to use one of the two
methods, extended canonical analysis or autocorrelation analysis, for the next
feature extraction.
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CHAPTER 4. ESTIMATION OF OPTIMAL NUMBER OF FEATURES

It is well known that classifier accuracy expressed as a function of the number of
features used shows a maximum at some finite dimensionality [22). For a given
class-conditional density function set, the occurrence of this peak is dependent
upon the training sample size [3], as a result of the accuracy dependence upon the
quality with which the density parameters are estimated.

A long-known fundamental barrier to the optimal design of classifiers is the inability
to be able to directly calculate the expected accuracy of a trial classifier design. As
a result, a common practice is to use a statistical measure, e.g. Bhattacharyya
distance, to estimate the expected accuracy. However the relationship of such
distance measures to classification accuracy, though monotonic, is not precisely
one-to-one, and thus, if such a distance is to be used in the design process, it is
important to clearly understand just what the relationship is between expected
accuracy and a specific distance measure used to estimate it. It is this relationship
which is studied next, paying specific attention to the effects of sample size and
parameter estimation variability.

4.1 Optimal Number of Features

The quality of a density parameter is specified by following theorems.

Theorem 1 (Rao-Blackwell)

Suppose T(x) is sufficient for 6 and that Eg[|S(x)[] < e forall 0 e
©. Let T"(x) = E[S(x)|T(x)]. Then for all 6 € ©, Eg[T (x) - q()]? <
Eg[S(x) - q(6))2. If Varg[S] < e, strict inequality holds unless T (x) =
S(x).

Proof) See [59] pp.121.

Theorem 2 (Lehmann-Scheffe)

If T(x) is a complete sufficient statistic and S(x) is an unbiased
estimate of q(6), then T'(x) = E[S(x)|T(x)] is an U. M. V. U.
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(uniformly minimum variance unbiased) estimate of q(0). If
Vare[T'(x)] < oo for all @, T'(x) is the unique U. M. V. U. estimate of

q(e).
Proof) See pp.[59] 122.

The idea of sufficiency is to reduce the data with statistics whose use involves no
loss of information. A statistic T(x) is called sufficient for a parameter 8, if and only if,

the conditional distribution of x given T(x) = t does not involve 8. Thus, once the
value of a sufficient statistic T is known, the sample x = (x4, ... .. , Xn) does not

contain any further information about 6.

A statistic T is said to be complete, if the only real valued function g defined on the
range of T which satisfies
Eolg(T)] =0 forall 8

is the function g(T) = 0. Completeness is evidently a property of the family of
distributions of T generated as 6 varies.

Theorem 3

Let {Pg : 6 € ©} be a k parameter exponential family as given by

k
P,0) = {exp| D, C(O)T,(x) +d(8) + 5(x) J b,

i=1

Suppose that the range of ¢ = (¢1(8), . . . ., ck(8)) has a non-empty interior. Then,
T(x) = (T1(x), . . ., Tk(x)) is complete as well as sufficient.

Proof) See [59] pp.1283.

Let x = (x4, ..., Xn) be a sample from a N(i,02) population where both p and 62 are
unknown. The distribution of x forms a two parameter exponential family in q =

(1,02).

n

i1 I

T(X)=(Z"i' Xf]
i -1

(4.1)
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is complete and sufficient. Since X is a function of T, it must be the U. M. V. U.
estimate of p if 62 is unknown.

2= 1 < ___2
o (n-ﬂg(xl X) )

is also a function of the complete sufficient statistic T and the U.M.V.U. of c2ifpis
unknown.

The risk function of an estimate T(x) is defined by

R(®, T) = Ej [L(8, T(x))] = | L(8, T(x)) dF(x|6)
(4.3)

where L(8, T(x)) is loss function. One may choose the mean squared error as a loss
function such that

Le, T)=(0-T)° (4.4)

Then

_Var(T(9 ) + [E 70 -q@n] 45)

Let T(x) = f and q(6) = m. T(x) is the unbiased estimate of m. Then

%

R(m,f) = % (4.6)

2
Let T(x) = & and q(6) = 02 T(x) is the unbiased estimate of 2. Then

R(,6°) = Var &)

2
- 0'4 Va{(n%)&]
(n-1)° o?
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20
n-1 (4.7)

Therefore the quality of an estimate is dependent upon the size of the training set
and the variance. However, the above risk value cannot show what the
relationships are between the amount of error and the quality of the estimates.

Usually, it is very difficult to obtain the risk value of a functional directly. Therefore,

Taylor series expansion techniques may be applied to approximate the risk value
of the functional’. The Taylor series expansion can be written as follows:

f(a+h, b+k) = f(a,b h—s—‘fkif
(a+h, b+k) = f(a,b) + | 54 By (X’Y)Ix-a,y=b+""+

n
1 hi + ki}
n! [ 8X Sy f(X,y)Ix =3, y - b ks S (4.8)

where a+h, b+k are estimates and a, b are real parameters. If a+h and b+h are
unbiased estimates, E[h] = 0 and E[k] = 0. Then, E [f(a+h,b+k)] is as follows.

2
E[f(a+h, b+k)] = f(a, b) + ;_— E[(h% + k%} f(x, y)l, _ ay- J +... “s)

Then, Var [f(a+h,b+k)] is as follows.

Var [f(a+h, bek)] = E [(@+h, b+k) - Elf(ash, beh)] ]

2
- 9 .19 9 9
=zE {[[hax + kay}(x'ynx-a,y-b +%(hax + kay] f(x.y)lx sayeb

2
2
1 el (hl skl
2 E [ [“ax + kay) 9,y bH

A Similar derivation of the functional relationship has appeared [60] since the derivation which
follows was first obtained.
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2
3 .9
EE[(h_+ k"—]f , ]
ax T oy Y Loy a (4.10)

Bayes error e* can be expressed by

e = J' min[Pp, (x), PP, (x)] dx

(4.11)
and bounded by
e c [P,P, /P, 0p, () ox “12)
If the class-conditional density functions are Gaussian, then
e c P1P2 exp[-B] (4.13)

where

) Z1+22l
Z1+22 2

1 1
B=—8—(m1-m2)r[ 2 ] (m1-m2)+Elnm

If the Bayes error is assumed to be directly related to the Bhattacharyya distance,
the estimated Bhattacharyya distance behavior can show that the increment of
Bayes error has as its origin the inaccurately estimated Bhattacharyya distance.
However, the Bayes error is not bounded by the Bhattacharyya distance but by a
function of Bhattacharyya distance.

The transformed Bhattacharyya distance is defined as follows:

Xy=1- [P.P, exp[-B] @.14)

The transformed Bhattacharyya distance is assumed to be directly related to
classification accuracy. Assume that the Bayes error is approximately equal to the
upper bound that is characterized by Bhattacharyya distance, then
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* -B
e = P1P29 (4.15)

The transformed Bhattacharyya distance is a lower bound of the correct
classification accuracy. If Py and P2 are equal, the estimated error of the classifier

designed by training samples can be expressed as
-B

£=zLe

i

ONIEES

(4.16)

In multivariate statistical analysis, a most powerful property is that the
Bhattacharyya distance is invariant under any one-to-one mapping. By the
simultaneous diagonalization,

M ) M ()

m’'=0,m =mZ =X =A (4.17)

The number of parameters for the estimated Bhattacharyya distance is 2(q + q2).

M (M T
— (1) 5‘11 X12 o }‘1q
i
! (1) RY
r{%‘(1) M 5\‘21 T xzq
ﬁ,(”: 2 o
() (M A
My | _iq1"'7‘QQ_
(4.18)
The estimated transformed Bhattacharyya distance can be expressed as
M M © @ (1) M @ )
K=t odod R AR A (4.19)

The estimated Bhattacharyya distance is a biased estimate. The bias of estimated
Bhattacharyya distance is well derived in [58,60].

E[( - m)* ") =0, k=123, ... (4.20)
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7»2k
E[(r’hi - mi)2k] = 1-3-(2k - 1)_i|_k_
" (4.21)

A
E[(ﬁij - xij)(ﬁkl - M) = i # ], I=k, =l or =], j=k

A, 2h
=—_ = T I=]=k=|

2
i
n-1

2
ii
(4.22)

For the computation of the derivatives of the Bhattacharyya distance containing
matrix, three basic matrix differential equations are needed.

oL alz|
— =.3y 3z, =|Z(ENT 4.23
=Ty, e (@.29)
ALY
=Y, IT+2 U] (4.24)
o

where U; has all zero valued components except that ith column and jth row
component is one.

3°1(B) _#(B) %8 +82f(B) 2B 2B
a?xiaxj - 0B i)xiaxi 3B ox, axj

(4.25)
@ (1

B __ o8B _ M ™

M= 5 @ 2(1+1) ,
ami ami i (4.26)
B 9B __ 1

2=, @2 2(1+A)
ami ami i (4.27)
B mm, Yy

M =730+ A1 A Y2 en) 4

an
i (4.28)
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mm. 0. .
B _. i + i i
ax!(!z) 401 + )1 +xﬁ) 2(1+1) 4A,
i (4.29)
2 27
8 ___ % A T T D 1
ax‘.1 )ax.u) 4(1+2,)(1 +xﬂ) ] T+h, 1 +k.L 4 2(1+0)(1 +A)
R (4.30)
2 2]
B 5 oL
225, @ 4(1+7\.“)(1+7LH)_1+7\.H 1+7ij._ 47%?‘;; 2(1+xﬁ)(1+xﬂ)
ij (4.31)
2
28 4 | R T
ax.‘.‘ )x.(.” 4(1+A)(1 ‘%u)[_ T4k, 1 +7ij 4 2(1+1,)(1 +xﬂ.)
ij i (4.32)
B _ 1 ( m; . m . &
ax.(?)x.(.?‘) 4(1+’~n)“+7~,-,-)|_‘+7*n 1+7ij 4x“xﬂ 2(1+xﬁ)(1+xu)
ij i (4.33)
2 2
8 % | m PRI D T
ax.(.z)ax.(.z) 4(‘+7‘ii)(‘+7‘jj)|_m~n 1+?\.].j 41“1“. 2(1+x“)(1+xn_) |
U (4.34)

The computation of the derivatives of the transformed Bhattacharyya distance can
be derived as follows.

@jre's aze-B=e'B
o 2
02e'B  JeB 2B 22eB/ 9B 2 i 1
_ . =B - 4.36
am{M2 T 0B M2 T 9B2 [amf"J 2(1+%) | 2(1+x) .39
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2
2B 908 328  PeB 3B m; 1
= + =eB - 4.37
omiP2 ~ 9B gm{@? © 0B (ami‘z’}2 [(2(1%) ] 2(1+%;) :l( )

2
m; m]
2B %8B 1

1
+ =eB| 2 + -7
aafaad" "o an}” 4(14) (14) 2(144)(1+%) 4

i j ]
- + (4.38)
4(1+7qi)(1+xij)k1+xi 14

2
mi m;
J2e-B J2eB B I 1 1
@t O 2= 2 + -
ali] al,j axi] 87\,], 4(1 +7\ii)(1 +)sﬂ) 2(1 +)\ii)(1 +)\u) 4}"ii;"ﬂ

i } }
: + (4.39)
4(1+2) (1 ”"’)b W 1y

&E—e-B 1 _ ‘L- m; 2
axﬁuz- 2(1+%;) 4 2(1+%)
2 2m-2
1 i ] .
- {2(1‘*7‘11) J((1+7\ﬁ) )+ 2(1+4)2 ) 4i‘ (4.40)

P8 o 1 1 mi i
A2 2an) x| 2014)
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2 2
1 2m; 1 1
] + - — (4.41)
[2(1”\'5) J (1+%) 2(1+4;)2  4Aj
2 2 m 2
08BY (deBY o i
[am§"] '(ami‘z’) =° L(mqi) ] (4.42)

2
deBY 0eBoeB (9eBY oeB B i
D ¥ M= | @ |+ 30 @ = 2028 (4.43)
alij 37\.” a?»,, al., 87\.,, alﬂ 4(1+7‘,,)(1+7£”)
- 22
B\ m;
__aem —ez| —L—. L. (4.44)
dAji 2(1+%) 2(1+X;)
B 22
)
-B\2 m;
ae—(g) ce2| 1. L. (4.45)
oA 2(1+%) 4N 2(1+7‘ii))

The bias of the transformed Bhattacharyya distance can be obtained as follows.

2
1 1 e-B M
£ o - ?9"3]=s—n[q >

= (1+%)

m‘2(1 +7\1|7Lu) (1 +)\."7\.u)( mi ml

M i 4
S| (143)2(14%) Lmhi)(ms,-)

201422 ' 2
+i mi (1+45) - ] - 1 - mi2
w1 | (1452 (1+%) 2 2(14))2
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2 2

m,
2 1 1 !
+ i Ai

ey 26 214N

(1+AiA;) (1425)

+a@n- 3 S

PNV 4.46
TR () 0+N) T (1+4)2 (4.46)

where q is the dimensionality, n is the number of samples, and B is the
Bhattacharyya distance.

The variance of the transformed Bhattacharyya distance can be obtained as
follows.

' -2B mi2 misz“ B
Var[1 ) 15945]%?6” ; (1+X;) +i=1i¢ji=1 2(1+%)2(1+X)?
Y
*2’2 (1«141-5)' : 2(14x)
N
+i 22l 1 1 il (4.47)

S 7Ny 2n 2(1+K)2

Although the Bayes error from the estimated classifier is not the actual error, we
want to find the risk value of the transformed Bhattacharyya distance because
increasing the risk value makes the classification error increase. The risk function
of the transformed Bhattacharyya distance is

R(Xg, Xg) =%(E[e'B - e"?*])2 +Va|{1 . %e-B}

(Ele-e - t])° (4.48)

=
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-2B
In equation (4.48), one may note that the exponential term, $—n , reduces the value

of the risk function while the rest of the terms cause the value of the risk function
increase. To minimize the risk value with a constraint to maximize the
Bhattacharyya distance, the dimensionality must be reduced when the number of
training samples is small. ,

If the features are ordered in decending order, the first feature reduces the risk
function and expands the Bhattacharyya distance the most. As the number of
features is increased, the summation terms increase more rapidly than the
exponential term. The strategy for ihe prediction problem can be established as
follows. If one wants to use as small a number of features as possible and achieve
as a large Bhattacharyya distance as possible, one should take advantage of the
transformed coordinates. The best one feature having the smallest risk value and
largest Bhattacharyya distance between any two classes can be extracted in the
transformed coordinates in the case of small training sample situation.

It may be noted from equation (4.46), that if only the mean difference term is
considered as in the case of a linear classifier with a fixed Bhattacharyya distance,
the bias increases linearly with the dimensionality, while if both the mean and
covariance terms are considered with a fixed separability for the case of a
quadratic classifier, the bias increases quadratically with the dimensionality.

4.2 Empirical Approach

Figure 4.1 shows in hypothetical fashion classification error for several cases. Case
(a) shows the true class conditional density and (b) and (c) are estimated class-
conditional densities. The area (1) is the true Bayes error. The area (2) or (3) is the
estimated Bayes error which is obtained by the estimated parameters. The area (4)
or (5) is the summation of Bayes error and increment error when the classifier is
designed by training samples and the error rate estimated by test samples. In
Section 4.1, the difference between area (1) and area (2) or area (3) is minimized.
In this section, the incremental error due to the inaccurate estimates which is
shown in the area (4) or (5) is studied empirically. Fukunaga and Krile[5]
developed an algorithm for calculating recognition error when applying pattern
vectors to an optimum Bayes' classifier. When the q random variables of the vector
X are independent the minus-log-likelihood ratio h(x) is as follows.

h(x) =
I

q
h(x)
=1

(4.49)
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Decision bounary due to case (b)

Decision bounary due to case (c)

P1(x) p2(x)

() True Class densities

\ (b) Class densities estimated
= from a finite training set

/\m Class densities estimated
from another training set

(1) True Bayes error

(2) Estimated Bayes error

(3) Estimated Bayes error

& (4) True error due to classifier (b)

q]]] (5) True error due to classifier (c) |

Figure 4.1  Class-conditional Densities and Decision Boundaries for a
Hypothetical 2-class Case (a) True Class Densities (b), (c) Class Densities
Estimated from a Finite Training Set
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The characteristic function of h(x) for class j is

o(w)=E ojWh(x)lclassi = ejWh(x)
{

3, = jwh(x))
= 2 I . P,(x) dx,
R4 (4.50)

pi(x) dx

By definition, once the characteristic function of h(x) is obtained the density function
of h(x) is its inverse Fourier transform.

p(hlclass i) = 5 f ow) e ™" dw
-5 (4.51)

When the distributions are normal, two covariance matrices can be diagonalized
simultaneously by linear transform. In the transformed coordinate system, all
features are independent. The errors are invariant under any transformation
because the likelihood ratio is independent of any coordinate system.
Characteristic functions of the minus log likelihood ratio for class 1 and class 2 can
be easily computed because the q random variables of vector x are independent.
This approach reduce the g-dimensional integral to a one-dimensional integral for
the error from each class.

o0 o
£ = P1jp1(h) dh + sz'pz(h) dh
; "= (4.52)

The increment error due to the inaccurately trained classifier may be expressed as

Ae=¢-¢"

o0 0 * 0
=|Ps fp1(h)dh + P, jpg(h)dh]-{m [p1(h)dh + P2 jpz(h)dh] (4.53)
0 —oe 0 —oo

To investigate the global relationships between the dimensionality, the sample
size, and the correct classification accuracy, a Monte Carlo simulation is used here.
The true Bayes' error can be computed numerically by Fukunaga's algorithm if one
has perfect information of the mean and covariance for Gaussian classes. Although
only 1-dimensional numerical integration is needed for Fukunaga's algorithm, it is
difficult to obtain accurate Bayes' error easily in high dimensions. Therefore, a
more simple means to estimate the Bayes' error is needed to study relationships
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between sample size, dimensionality, and added error empirically. Whitsitt and
Landgrebe [50] suggested that if we let f = erf, then we are assured that the locus of
(pe, f) contains pe = f, and in this sense, f approximates the error. The Chernoft
bound for a multivariate normal distribution is given by

-1
C(s) = (1-s)(m1-m2)T{(1'3)21"'522} (m, -m,)

N{J,—n

|(1-8S)Z, +SZ]
+1—|n ] 15 2

- s
IZ 1%, (4.54)

The Bhattacharyya distance B = C(0.5). The error function Bhattacharyya distance
is defined by

E = 0.5- 0.5erf(\B) (4.55)

The error function transformed Bhattacharyya distance is defined by

Eg=1-E =0.5+0.5erf(VB) (4.56)

where the error function is given by

Ambiguity and linearity are two significant characteristics of separability measures.
It is empirically illustrated that the probability of correct classification and the error
function transformed Bhattacharyya distance have a linear relationship. Figures
4.2, 4.3, and 4.4 show why the error function Bhattacharyya distance has linear
relationship with Bayes' error, as explained in the following. The q is the
dimensionality and n is the number of samples.
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Figure 4.2 Simulation Result for Exponential Bhattacharyya
Distance vs Error Function Bhattacharyya Distance (q=10, n=co)



48

1.0

0.9

0.7

0.6

Transformed Bhattacharyya Distance
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Classitication Accuracy

Figure 4.3  Simulation Result for P, vs Xg (@ = 10, n = o)

An empirical simulation was performed for ten and thirty dimensions. One thousand
test samples are used to estimate the classification accuracy. The number of
simulations in Figures 4.3 and 4.6 is one thousand at a given number of training
samples. The error function Bhattacharyya distance is a tighter bound than the
exponential Bhattacharyya distance as shown in Figure 4.2.
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Figure 4.4  Simulation Result for P, vs Eg (q =10, n = o)

In Figure 4.3, classification accuracy versus transformed Bhattacharyya distance is
plotted where the dimensionality is ten. In Figure 4.5, classification accuracy versus
transformed Bhattacharyya distance is plotted where the dimensionality is thirty.
The classification accuracy is obtained by Fukunaga's algorithm. By using the error
function Bhattacharyya distance, classification accuracy versus error function
transformed Bhattacharyya distance are illustrated in Figures 4.4 and 4.6. The
probability of correct classification and the error function transformed
Bhattacharyya distance are seen to have a linear relationship, and the error
function Bhattacharyya distance is a tighter bound than the exponential
Bhattacharyya distance.
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Figure 4.5 Simulation Result for P, vs Xg (q = 30, n = o)

Therefore, Eg is selected to study relationships between sample size,
dimensionality, and classification results, and to observe the Hughes phenomenon
to determine the optimal number of features in two class cases. In Figure 4.7, the
dimensionality problem such as the Hughes phenomenon is observed. The
classification accuracy shown in Figure 4.7 is much less than the ideal
classification accuracy in Figure 4.6.
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Figure 4.6  Simulation Result for P, vs Eg (q = 30, n = =)
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Figure 4.7  Simulation Result for P, vs Eg (q = 30, n = 60)

Figure 4.7 shows that the estimated classification accuracy is well below the real
classification accuracy when only 60 training samples are used to estimate the
class-conditional densities in 30 dimensions. An empirical simulation was
performed for from thirty to one hundred dimensions. One thousand test samples
were used to estimate the classification accuracy. The number of simulations in
Figures 4.8 and 4.9 is fifty for each given number of training samples. The
corresponding number in Figures 4.7, 4.10, and 4.11 is one thousand.
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Figure 4.8 Classification Accuracy vs Eg (q = 50)

As the number of training samples is increased, P, gradually approaches the ideal
P.. In Figures 4.8 and 4.9, two times, ten times the dimensionality and power of two
of the dimensionality of the data are used to estimate the class-conditional
densities in the simulations. When two times the dimensionality of the data are
used, the estimated classification accuracy is well below the real classification
accuracy. When ten times the dimensionality of the data are used, the estimated
classification accuracy is almost the same as the real classification accuracy. When
the power of two of the data are used, the estimated classification accuracy is
similar to the result in case of ten times the dimensionality of the data.
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Figure 4.9 Classification Accuracy vs Eg (q = 100)

To illustrate the one-to-one relationship between estimated classification accuracy
and Eg, the average classification accuracy are plotted in Figures 4.10 and 4.11. As

a result, it appears that approximately six to ten times the number of training
samples with respect to the dimensionality are needed to achieve a satisfactory
design at this dimensionality.

As the dimensionality is increased, the separability is also increased since the
added features give more information. When the dimensionality is increased with a
fixed separability, the added error increases quadratically [60]. However, when the
dimensionality and the separability increase together, it is difficult to find a simple
relationship because the increased separability reduces the added error and the
increased dimensionality cause the added error to increase, as in equation (4.48).
In this section, the cases of increasing both dimensionality and separability are
tested.
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The increment error is simultaneously affected by two factors, dimensionality and
separability. For predicting the optimal number of features, we conclude that the
optimal number of features in transformed coordinates is just one when only small
numbers of samples are available. Empirically, it is shown that a reasonable
sample size is six to ten times the dimensionality if the dimensionality and
separability simultaneously increase.
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CHAPTER 5. DATA PROCESSING AND EXPERIMENTS

5.1 Introduction

In this chapter, Decision Tree Classifiers (DTC's) designed by various procedures
will be compared to verify which design procedure provides the better
performance. Further matters presented are,

a performance comparison of a DTC and a single layer classifier;
a DTC approach for multitype data;

the effects of the feature extraction in DTC design; and,

a strategy for feature selection.

[ ] . o L]

The Bayesian decision rule with the assumption of a 0-1 loss function and
multivariate normal distributions is used as decision rule in all experiments when
classification is involved. The 0-1 loss function assigns no loss to a correct
decision, and unit loss to any error. Thus, all errors are assumed equally costly.
Three kinds of data sets are used and will be referred to as follows: Flight Line C-
1(hereafter referred to as FLC-1), Anderson River, Field Spectrometer System
(FSS).

FLC-1 data were measured and recorded from an aircratft flight on June 28, 1966,
at approximately 12:30 PM local time, at an altitude of 2600 feet above terrain in
Tippecanoe County, Indiana. A spatially scanning radiometer with a 3 milliradian
spatial resolution was used to obtain relative measurements of the energy reflected
from the ground in twelve different wavelength bands. As shown in Table 5.1, the
last two wavelength bands are in the reflective infrared portion of the spectrum. The
other bands encompass the visible wavelengths. Part of the selected area is used
for training and a much larger portion is used for testing.
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Table 5.1 Multispectral Scanner Data of FLC-1

Feature No. | Spectral Band
(microns)
1 0.40 - 0.44
2 0.44 - 0.46
3 0.46 - 0.48
4 0.48 - 0.50
5 0.50 - 0.52
6 0.52 - 0.55
7 0.55-0.58
8 0.58 - 0.62
9 0.62 - 0.66
10 0.66 - 0.72
11 0.72 - 0.80
12 | 0.80-1.00

Table 5.2  FSS Data

[ Location Date
Kansas 9-28-76
Kansas 5-03-77
Kansas 6-26-77

North Dakota 5-08-77
North Dakota 6-29-77
North Dakota 8-04-77

Six sets of high spectral resolution field measurement data were taken over
Williams County, North Dakota and Finney County, Kansas. These data were taken
by the Field Spectrometer System (FSS) mounted in a helicopter. The spectral
resolution was 0.02 um for the interval from 0.4 um to 2.4 um. Location and date
information is given in Table 5.2.

The Anderson River data set consist of 11 bands of airborne multispectral scanner
(A/B MSS) data, 4 bands (X and L) of synthetic aperture radar imagery (horizontal
polarization transmit and horizontal/vertical polarization receive) and digital terrain
model information including digital elevation, slope and aspect (DEM, DSM and
DAM respectively). The A/B MSS band intervals are given in Table 5.3.
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Table 5.3 A/B MSS for Anderson River

|

Feature No. | Spectral Band
(microns)
0.38-0.42
0.42-0.45
0.45-0.50
0.50 - 0.55
0.55 - 0.60
0.60 - 0.65
0.65-0.69
0.70-0.79
0.80 - 0.89
0.92-1.10
8.00 - 14.0 .

OCoOoO~NOOLWN =

The A/B MSS Anderson River data was obtained over a Canadian forest site (2.8
km by 2.8 km) on July 29, 1978 at an altitude 3100 meters above sea level. The
spatial resolution was 7 meters. Weather conditions were clear. Steep Mode SAR
data was measured on July 25, 1978 over the site at an altitude 6700 meters above
sea level. The raw data resolution was 3 meters. The X band wavelength is 3 cm
and L band wavelength is 23 cm. Shallow Mode SAR data was obtained on July
31,1978 at an altitude 6400 meters above sea level.

5.2 Comparisons for Bottom Up DTC

In this section, three tree design methods, single linkage, complete linkage, and
dynamic linkage are used to design a bottom up DTC as described in section 2.3.
To design the bottom up DTC, mean vectors and covariance matrices are
estimated from the training samples. The Bhattacharyya distance is used to
estimate the separability between groups because of its smaller ambiguity [50].

xperi A

Eight classes of FLC-1 data were selected as follows: Alfalfa, Corn, Oats, Red
Clover, Soybeans, Wheat, Bare Solil, and Rye. As shown in Table 5.4, the number
of training samples for each class was chosen such that it is only slightly larger
than the number of spectral features since it is commonly the case in remote
sensing situations that training set sizes are small. At least one more sample than
the number of features is needed to avoid singular covariance matrices. A large
number of samples were used to evaluate the classification accuracy as shown in
Table 5.4.
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Table 5.4 FLC-1 Data

Ir Class #Train #Test Dim
Alfalfa(b) 15 760 12
Corn(e) 15 1360 12
Oats(j) 15 1380 12
Red Clover(l) 15 1357 12
Soy Bean(p) 15 1053 12
Wheat(u) 15 492 12
Bare Soil(x) 15 1012 12

Rye(y) 15 2322 12 H
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Figure 5.1  Single Linkage DTC (FLC-1, 8 Class)
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Figure 5.2 Dynamic Linkage DTC (FLC-1, 8 Class)

The resulting single linkage DTC for eight classes is shown in Figure 5.1 and the
dynamic linkage DTC in Figure 5.2. The complete linkage DTC is shown in Figure
5.3. The results of classification for various numbers of features are given in Table
5.5, 5.6, and 5.7. Because the mean differences between classes are dominant, the
extended canonical analysis for the feature subsets was used to seek maximum
separability.
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Figure 5.3 Complete Linkage DTC (FLC-1, 8 Class)

Table 5.5  Classification Accuracy(%) for the Single Linkage Design

Class 1" 2 3 4 5 6 7 12
Alfalfa 71.2 69.7 72.8 79.6 81.8 85.8 85.7 57.8
Comn 97.4 97.4 97.9 97.8 96.5 96.0 94.6 84.7
Oats 97.8 97.3 97.1 97.0 97.0 96.5 95.9 61.3
Clover| 84.5 85.6 84.3 80.3 77.4 69.6 71.2 62.1
Bean 85.9 83.4 72.1 75.0 74.0 75.1 71.9 71.0

Wheat | 99.2 94.7 93.3 91.5 90.9 83.7 77.4 24.4
Soil 91.6 91.4 90.7 92.0 90.9 85.2 80.7 20.7
_Rye 94.5 93.2 86.6 86.6 86.6 85.8 84.2 22.4

|| Avg 90.3 89.1 86.9 87.5 86.9 84.7 82.7 50.6 |

* the number of features which is used at each node.
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Table 5.6  Classification Accuracy(%) for the Complete Linkage Design
"Class 1 12 “

2 3 4 5 6 7
Alfalfa |82.0 81.8 75.5 83.8 83.3 85.1 85.0 52.8
Corn |24.9 22.7 20.0 19.9 21.5 26.5 24.0 87.9
Oats 90.4 91.5 88.3 86.6 82.5 82.3 79.8 43.0
Clover |83.7 85.4 84.8 80.3 75.7 67.2 69.7 54.8
Bean |86.2 83.5 721 75.0 741 75.2 72.2 71.5

Wheat [99.6 99.6 99.4 99.8 99.4 99.6 98.0 98.8
Soil 100 100 100 100 100 99.7 99.7 95.6
Rye 96.9 96.5 96.5 96.1 96.0 96.9 98.7 97.9

83.0 6 |796 [80.2_ |794 |791 [784 |753 |

Table 5.7  Classification Accuracy(%) for the Dynamic Linkage Design
Class 1 2 3 4 5 6 7 12 |
Alfalfa | 91.3 84.2 82.8 69.5 63.4 58.8 51.6 6.3
Corn 96.0 96.5 96.9 97.1 97.4 97.3 97.1 88.9
Oats 97.2 97.0 96.7 96.7 96.1 95.5 94.3 60.3

88.4
85.4

Clover 91.2 90.1 87.6 86.4 78.0 74.7 59.9
Bean . 83.0 71.5 74.6 73.4 74.6 71.8 71.5
Wheat | 99.2 99.2 98.6 97.8 97.0 95.3 87.4 39.6
Soil 91.4 83.3 86.4 86.1 80.1 70.5 57.9 20.0
83.6 81.8 70.9 63.9 63.0 57.6 55.2 9.3
91.6 89.5 86.7 84.2 82.1 78.5 73.8 44.5

Figure 5.4 shows the average classification accuracy vs the number of features
used for all three design methods. The dynamic linkage tree gave the best
performance, and at the lowest feature dimensionality in this experiment. All three
methods showed a decrease in classification accuracy as the number of features
was increased. This characteristic is to be expected, given the small number of
training samples since the quality of class statistics estimation become poorer with
added features.
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Figure 5.4 Average Classification Accuracy vs Number
of Features Used for Experiment 5.2.1.

xperi

Twenty three classes of FLC-1 data are chosen as shown in Table 5.8, to test
performance of a bottom up DTC in case of a larger number of less separable
classes. The twenty three classes consist of two alfalfa fields, four corn fields, four
oats fields, three red clover fields, five soybeans fields, three wheat fields, bare soil,
and rye field. Fifteen training samples for each class are chosen and at least 492
samples are used to evaluate the bottom up DTC. To test the more complex data,
the same species located on different areas are considered as different classes.
Since the mean difference of the Bhattacharyya distance is dominant between
classes, canonical analysis for feature extraction was applied.
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Table 5.8 FLC-1 Data (23 Class)

Class #Train  #Test Dim
Alfalfai(a) 15 675 12
Alfalfa2(b) 15 760 12
Corni(c) 15 651 12
Corn2(d) 15 1656 12
Corn3(e) 15 1360 12
Corn4(f) 15 1998 12
Oats1(g) 15 1034 12
Oats2(h) 15 737 12
Oats3(i) 15 1872 12
Oatsd(j) 15 1380 12
Red Clover1(k) 15 1360 12
Red Clover2(l) 15 1357 12
Red Clover3(m) 15 836 12
Soy Beani(n) 15 1189 12
Soy Bean2(o) 15 2491 12
Soy Bean3(p) 15 1053 12
Soy Bean4(q) 15 1349 12
Soy Bean5(r) 15 1890 12
Wheat1(s) 15 576 12
Wheat2(t) 15 671 12
Wheat3(u) 15 492 12
Bare Soil(x) 15 1012 12

) 15 2322 12

Figures 5.5, 5.6, and 5.7 show the single linkage, the complete linkage, and the
dynamic linkage DTC designs. All three classifiers are constructed by the bottom
up approach.



66

fytjuhgsxkmiablgrdenpeco
Figure 5.5 Single Linkage DTC (FLC-1, 23 Class)

abjkmtuhgsfxydigrlenpco

Figure 5.6 Complete Linkage DTC (FLC-1, 23 Class)
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fytkmabjuhgsxldirqenpco

Figure 5.7 Dynamic Linkage DTC (FLC-1, 23 Class)

Table 5.9. Twenty Three Class Test Sample Accuracies in Per Gent.
ﬂ Class Single Complete  Dynamic “

Alfalfal(a) 58.1 60.4 44.0
Alfalfa2(b) 40.5 45.5 29.5
Corni(c) 57.1 20.3 36.3
Corn2(d) 76.9 66.9 72.8
Corn3(e) 87.2 59.6 74.0
Corn4(f) 0 0 0
Oats1(g) 57.8 47.1 53.6
Oats2(h) 67.4 71.6 67.4
|| Oats3(i) 51.6 4.7 78.0
Oats4(j) 71.0 70.4 85.3
Red Clover1(k) 69.7 93.8 69.3
Red Clover2(l) 81.5 51.9 85.0
Red Clover3(m) 36.5 37.8 42.6
Soy Bean1i(n) 30.1 12.1 26.4
Soy Bean2(o) 33.6 31.4 33.3
Soy Bean3(p) 51.1 42.1 52.9
Soy Bean4(q) 6.9 9.8 11.9
Soy Bean5(r) 91.3 96.9 89.6
Wheat1(s) 42.9 42.9 42.9
Wheat2(t) 52.8 88.2 52.8
Wheat3(u) 97.6 99.4 97.6
Bare Soil(x) 94.7 98.8 97.7
Rye(y) 84.1 85.6 84.1
Average | 583 53.8 57.7 ||
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Table 5.9 shows that the single linkage DTC gave slightly better performance than
the dynamic linkage approach, with the complete linkage method somewhat lower

than these.

xperimen

For a high dimensional data test of the bottom up design approach, ten classes of
FSS which are spatially and temporally varying data were chosen as shown in
Table 5.10. The ten classes consisted of three summer fallows fields, two
unknowns fields, and five wheat fields. The FSS contained sixty-one spectral
bands, however, since there are water absorption regions in the higher range, the
first thirty features of the sixty-one were selected for this experiment.

Table 5.10 FSS Data

~ Class #Train #Test Dim
Fallow1(a) 40 603 30
Fallow2(b) 40 374
Fallow3(c) 40 397
Unknown1(d) 40 642

Unknown2(e) 40 611
Wheat1(f) 40 618
Wheat2(g) 40 637
Wheat3(h) 40 891
Wheat4(i) 40 624
Wheat5(j) 40 747

Several hundred test samples for each class were used to insure a reliable
estimate of performance. To simulate the limited sample situation, forty training
samples for each class were selected on the basis of evenly spaced separability.
The location information is given in Table 5.11.

Table 5.11 FSS Class Assignment
Location Class "

Kansas(9-28-76) b, e
Kansas(5-3-77) d,f
Kansas (6-6-77) ag
North Dakota(5-8-77) C,i
North Dakota(6-29-77) j
North Dakota(8-4-77
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Figure 5.8  Single Linkage DTC (FSS)
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Figure 5.9 Complete Linkage DTC (FSS)



70

(al bl cl dl el fl g' h' i’ J)

/N

(g, h) (a,b,c,d,eflij

/N

j (a,b,¢,d efi

/N

f (a,b,c,d, e, i)

/N

(b,e) (a,¢,d,i)

/N

(c.) (a,d)

Figure 5.10 Dynamic Linkage DTC (FSS)

Figures 5.8, 5.9, and 5.10 show the single linkage, the complete linkage, and the
dynamic linkage DTC. Table 5.12 shows the classification performance in each
case. As is seen, there was very little difference in the performance of the three
design approaches in this experiment.

Table 5.12 FSS Data Result

IL Class Single Complete  Dynamic
Fallow1(a) 55.9 63.5 63.7
Fallow2(b) 82.4 82.6 82.6
Fallow3(c) 66.0 67.5 61.7
Unknown1(d) 441 41.3 43.9
Unknown2(e) 69.7 71.0 71.7
Wheat1(f) 59.1 56.5 59.2
Wheat2(g) 84.0 83.5 84.0
Wheat3(h) 85.8 85.3 85.8
Wheat4(i) 48.7 49.4 50.6
Wheat5(j) 81.9 83.8 81.9
Average 67.8 68.4 68.5
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In assessing the three experiments so far, although there was some difference in
the performance of the three bottom up design procedures, no one method
appears to clearly dominate. In cases where a bottom up approach is called for,
any of the three might be useful, with a perhaps slight preference for the dynamic
approach.

5.3 Top Down and Hybrid DTC

In this section, the top down DTC and the hybrid DTC will be compared. In the top
down approach, a clustering algorithm is applied to separate the subgroups. the
criterion function used for the top down approach is Euclidean distance while the
criterion function for the hybrid approach is the normalized Euclidean distance. In
the hybrid approach, the tree structure is dependent upon the initial cluster points.
To obtain the initial points, a bottom up grouping method is used.

Experiment 5.3.1

Eight classes which are the same in experiment 5.2.1 were selected again and the
same training and test sets were used. To construct the top down tree, the mean
vector and covariance matrix of the combined training data were computed to
obtain initial cluster centers uniformly spaced along the principal diagonal of the
rectangular parallelepiped enclosing that data. After obtaining two subgroups,
clustering is applied to each subgroup again. Figure 5.11 shows the top down
DTC which results. Note here that are three overlapping classes , e, |, and u.

(b, e, j,1,u, x4

Figure 5.11 Top Down DTC (FLC-1, 8 Class)
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Figure 5.12 Hybrid DTC (FLC-1, 8 Class)

For the hybrid DTC, the complete linkage method is used to obtain the initial cluster
centers and initial subgroups. Figure 5.12 shows the hybrid DTC. There is one
overlapping class, e. For feature extraction, extended canonical analysis is applied
in each subspace to ascertain the largest Bhattacharyya distance. The hybrid DTC
is seen to improve the classification accuracy as shown in Table 5.13 and 5.14.

Table 5.13 Top Down DTC Result (FLC-1, 8 Class)

Class 1" 2 3 4 5 6 7 12
Alfalfa 70.9+ 58.8 61.2 65.5 59.3 65.8 55.7 49.7
Corn 97.1 96.5 96.3 96.8 98.8 98.2 98.5 81.8
Oats 97.2 96.5 96.2 95.4 892.6 88.6 87.5 76.7
Clover 87.0 88.9 91.6 85.2 83.3 81.6 70.4 37.9
Bean 85.9 83.1 72.1 74.7 73.8 74.7 71.6 70.9
Wheat 99.4 g99.2 99.2 99.4 99.2 99.0 98.2 98.8
Soil 99.7 99.7 99.9 96.3 95.3 95.5 94.4 100

Rye 94.0 93.2 89.6 89.1 89.0 90.9 91.5 98.6
Avg | 91.4 89.5 88.3 88.3 86.5 86.8 83.6 76.8
* the number of features which is used at each node.
+ correct classification accuracy(%)
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Table 5.14 Hybrid DTC Result (FLC-1, 8 Class)

Class 1 2 3 4 5 6 7
Alfalfa 88.6 76.2 73.0 75.4 68.4 63.4 54.2 9.0
Corn 97.0 96.5 96.3 96.8 98.8 98.2 98.5 81.8
Oats 92.0 96.0 96.2 95.4 93.2 89.6 88.0 81.7
Clover 88.5 91.6 92.8 90.0 89.9 89.8 74.2 37.1
Bean 85.9 83.1 72.1 74.7 73.8 74.7 71.6 70.9
Wheat 99.4 99.2 99.2 99.4 99.2 99.0 98.2 08.8
Soil 99.7 99.7 99.9 99.9 99.9 100 100 94.8
93.7 93.4 93.3 94.0 94.4 93.2
90.4 90.6 90.0 88.6 849 | 71.0 ||

In order to test the top down and hybrid DTC design schemes against the case of
large numbers of less separable classes, the twenty three classes, training and test
samples of experiment 5.2.2 are again used. Figure 5.13 shows the top downDTC
resulting. Note that there are two overlapping classes ¢ and k.

For the hybrid DTC, the complete linkage method was used to obtain the initial
cluster centers and initial subgroups. In the first stage, two subgroups were initially
determined by complete linkage. After the mean vectors and covariance matrices of
the subgroups were obtained, mean vectors became initial center points and
covariance matrices were used to normalize the distance from sample to cluster
point. After merging and migrating, new subgroups were obtained.
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abkmejkltfgsyuxipgrhcecdcno

Figure 5.13 Top Down DTC (FLC-1, 23 Class)

abmke jkilfstuyxghipgqrcdconoe

Figure 5.14 Hybrid DTC (FLC-1, 23 Class)

Figure 5.14 shows the hybrid DTC. There are four overlapping classes ¢, e, k and
o. For feature extraction, extended canonical analysis was applied in each
subspace to maximize the Bhattacharyya distance. The hybrid DTC reduced the
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error rate by 5.2 percent with respect to the top down classifier in this experiment,
as shown in Tables 5.15 and 5.16.

Table 5.5 Top Down DTC Result (FLC-1, 23 Class)

Class 1 2 12 |

Alfalfal(a) 31.7+ 25.2 19.1
Alfalfa2(b) 18.3 22.1 7.1
Corni(c) 39.3 39.8 22.4
Corn2(d) 66.6 66.6 59.2
Corn3(e) 80.4 79.6 62.2
Corn4(f) 0 0 0
Oatsi(g) 38.0 38.9 1.1
Qats2(h) 56.5 55.4 35.8
Oats3(i) 37.1 39.5 19.7
l Oats4(j) 70.9 70.8 72.9
Red Clover1(k) 82.7 81.7 92.8
Red Clover2(l) 84.0 86.2 81.9
Red Clover3(m) 17.3 16.8 17.2
Soy Bean1(n) 0.4 0.8 0
Soy Bean2(o) 39.2 40.2 72.8
Soy Bean3(p) 53.3 53.1 55.4
Soy Bean4(q) 8.3 37.8 61.4
Soy Beanb(r) 95.7 89.3 56.0
Wheat1(s) 49.3 49.5 5.9
Wheat2(t) 89.3 87.6 24.3
Wheat3(u) 81.7 82.1 98.0
Bare Soil(x) 100 100 99.9
Rye(y) 82.5 81.4 56.3
| Average 53.2 54.1 44.4

* the number of features which is used at each node.
+ correct classification accuracy(%)
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Table 5.16 Hybrid DTC Result (FLC-1, 23 Class)

[ Class 1 2 12 ]I
Alfalfal(a) 41.2 35.0 67.9
Alfalfa2(b) 35.5 471 11.7
Corni(c) 85.3 85.7 45.8
Corn2(d) 61.8 61.1 66.2
Corn3(e) 81.9 80.6 60.8
Corn4(f) 0 0 0
Oats1(g) 44.6 44 .4 20.5
Oats2(h) 74.5 73.8 721
Oats3(i) 411 43.0 17.9
Oats4()) 69.6 67.6 65.1
Red Cloveri(k) 82.4 81.7 60.9
| Red Clover2()) 776 | 785 | 79.6
Red Clover3(m) 29.5 29.0 32.4
Soy Beani(n) 20.0 20.3 21.8
Soy Bean2(o) 22.7 14.4 38.9
Soy Bean3(p) 53.0 52.8 52.5
Soy Bean4(q) 8.0 40.2 58.0
Soy Bean5(r) 95.6 89.1 56.0
Wheat1(s) 45.3 45.3 21.5
Wheat2(t) 94.9 97.6 97.4
Wheat3(u) 97.6 99.0 24.8
Bare Soil(x) 100 100 94.3
Rye(y) 82.4 85.5 95.4
|| Average 58.5 | 594 52.3 |

5.4 Bottom Up and Hybrid DTC

In the previous section, the hybrid DTC was shown to provide a greater
classification accuracy than the top down DTC. The hybrid DTC will next be
compared to the bottom up DTC. Table 5.17 shows that the hybrid DTC reduces the
error rate by 4.7 % over the complete linkage DTC. Table 5.18 shows that the
hybrid DTC improves 10.3 % classification accuracy over the complete DTC and
has the highest performance among the methods tested.
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|

Table 5.17 Hybrid and Bottom Up DTC (FLC-1, 23 Class)
Class Hybrid Single Complete  Dynamic
Alfalfai(a) 41.2 58.1 60.4 44.0
Alfalfa2(b) 35.5 40.5 45.5 29.5
Corni(c) 85.3 57.1 20.3 36.3
Corn2(d) 61.8 76.9 66.9 72.8
Corn3(e) 81.9 87.2 59.6 74.0
Corn4(f) 0 0 0 0
Oats1(g) 44.6 57.8 47 1 53.6
Oats2(h) 74.5 67.4 71.6 67.4
Oats3(i) 41.1 51.6 4.7 78.0
Oats4(j) 69.6 71.0 70.4 85.3
Red Clover1(k) 82.4 69.7 93.8 69.3
Red Clover2(l) 77.6 81.5 51.9 85.0
Red Clover3(m) 29.5 36.5 37.8 42.6
Soy Bean1(n) 20.0 30.1 12.1 26.4
Soy Bean2(o) 22.7 33.6 31.4 33.3
Soy Bean3(p) 53.0 51.1 42.1 52.9
Soy Bean4(q) 8.0 6.9 9.8 11.9
Soy Bean5(r) 95.6 91.3 96.9 89.6
Wheat1(s) 45.3 42.9 42.9 42.9
Wheat2(t) 94.9 52.8 88.2 52.8
Wheat3(u) 97.6 97.6 99.4 97.6
Bare Soil(x) 100 94.7 98.8 97.7
Rye(y) 82.4 84.1 85.6 84.1
Average 58.5 58.3 53.8 57.7

Table 5.18 Hybrid and Bottom Up DTC (FLC-1, 8 Class)

Class Hybrid Complete Single Dynamic
Alfalfa2(b) 88.6 82.0 71.2 91.3
Corn3(e) 97.0 24.9 97.4 96.0
Oats4(j) 92.0 90.4 97.8 97.2
Red Clover2(l) 88.5 83.7 84.5 88.4
Soy Bean3(p) 85.9 . 86.2 85.9 85.4
Wheat3(u) 99.4 99.6 99.2 99.2
Bare Soil(x) 99.7 100 91.6 91.4
Rye(y) 95.5 96.9 94.5 83.6

Average 93.3 83.0 90.3 91.6




Experiment 5.4.1
In this experiment, the untransformed feature extraction method is applied at each

node to compare the top down, the bottom up, and the hybrid DTC performance.
The DTC's as shown in Figures 5.6, 5.13, and 5.14 are used for this experiment.
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The number of features used for classification was chosen arbitrarily as three since
classification results for this data commonly peaks at about three features. The
feature subsets are selected based on the averaged pairwise Bhattacharyya
distance. When the best three features are used over all nodes, the hybrid DTC has
the best performance. Improvements of classification accuracy of a hybrid DTC is
clearly observed, as shown in Table 5.19 and 5.20. It is noted that the classification
accuracy of the hybrid DTC is about 5 % higher in eight classes and 9 % higher in
twenty three classes than the bottom up DTC.

Table 5.19 Untransformed Best Three Feature Result (8 Class)

Class a C 0 r w X y Av
Top down 28.0198.0 660 784 | 85.6 | 99.6] 999 [ 986 [ 855
Bottom up ©8.2 19741987787 ]| 857 |99.6 826 |521]81.6|

[ Hybrid 66.4 ] 98.2 | 66.0 | 81.0  85.6 99.6 | 99.9 | 985 | 86.9 ||

Table 5.20 Untransformed Best Three Feature Result (23 Class)

l Class

|

a b c d e f
[Topdown [26.0] 225 | 52 | 64.0 [ 89.3] 0 [ 3.2 | 734
Bottom up 35.1 |1 328 | 72.7 | 440 | 85.7 0 55.1 1 81.8
llﬂybrid 39.4 | 40.8 | 77.6 | 766 | 89.7 | 0 | 18.9 | 46.1 |
"i Class i j k l m n 0 )
Top down 37.8 | 67.7 | 97.0 | 77.7 | 239 | 8.7 7.4 | 55.9
[ Bottomup | 20.2 | 59.7 | 51.5 | 64.9 | 240 | 7.0 | 23.7 | 49.6
M‘lybrid 27.0 | 904 | 76.3 | 75.0 | 37.7 | 8.0 17.4 | 85.9
[T Class g r s t u X y Av
" top down 40.3 | 75.4 0.5 5.1 98.6 | 100 | 71.9 | 45.3
bottom up 116 | 426 | 40.6 | 344 | 96.1 | 92.3 |1 485 | 46.7 |
wbrid 347 1 74.0 | 20.0 | 77.5 ] 98.4 | 100 [ 94.0 [ 55.5
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5.5 DTC and Single Layer Classifier

As demonstrated in section 5.4, the hybrid DTC has the best performance among
the methods tested. The following experiment is conducted mainly for the purpose
of observing the dimensionality problem in multispectral recognition and
comparing the DTC to the single layer classifier.

Experiment $.5.1

The same eight classes, training and test as in experiment 5.2.1 and the twenty
three classes, training and test as in experiment 5.2.2 were selected again. Two
feature selection methods were used. The first feature selection method, called
untransformed feature selection, used the pairwise comparison of Bhattacharyya
distance. The second feature selection technique, called transformed feature
selection used the canonical transform method. In the untransformed feature
selection case, the error rate of the complete feature set was always higher than
the best result which was obtained by using subsets of twelve features as shown in
Figures 5.15 and 5.16. The best performance was achieved at between three and
six features.
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Figure 5.15 Untransformed Feature Selection Result (8 Class)

The hybrid DTC was compared to the single layer classifier in Figures 5.15 and
5.18. In Figure 5.15, the untransformed feature selection technique was applied
and 8 classes of FLC-1 data were used. The result shows that the DTC has better
performance at small feature subsets. There are fluctuations above 6 features due
to variations of the sample mean and sample covariance which are random
variables. In Figure 5.16, the untransformed feature selection technique was
applied and 23 classes of FLC-1 data were used. Figure 5.16 shows that the DTC
had best classification results at eight features.
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Figure 5.16 Untransformed Feature Selection Result (23 Class)

The transformed feature selection technique was applied to the 8 classes and 23
classes cases of FLC-1 data. Figures 5.17 and 5.18 show the results. These two
figures show that the DTC had better performance than the single layer classifier.



82

100

90

80

70 1/

Classification Accuracy (%)

0—— | Singdle Layer Clagsifier

60

—@— Hybyid DTLC

50

5 6 7 8 g 10 11 12

Number of Features

Figure 5.17 Transformed Feature Selection Result (8 Class)



70

&

>

(4]

g

5 50

Q

Q

g

c

2 40

[\

L

»

a

o 30
20

Figure

83

7 \
/ N
// N
/ —+o0—+  Sihgle Liayer ¢lassifier
—to—  Hybrid RIG
!
0 2 4 6 8 10 12
Number of Features
5.18 Transformed Feature Selection Result (23 Class)

5.6 DTC for Multisource Data

The DTC can be also applied to multisource, multitype data. In this section, a DTC
application to such data will be described. The Anderson River data was the
multisource, multitype data as described in section 5.1.
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Table 5.21  Multisource Anderson River Data

Classes #Train #Test Dim
Douglas-Fir(d) 30 1902 22
D-F + Lodgepole Pine(f) 30 5393 22
D-F + Cedar(i) 30 2865 22
Hemlock + Cedar(l) 30 3143 22
D-F + Other Species(q) 30 1279 22
Forest Clearings(t 30 12594 22

(d,fi,1,49%
(d,f i q

N

[ q f I
Figure 5.19 Hybrid DTC (Multisource)

Experiment 5.6.1

Six classes of Anderson River data were selected as shown in Table 5.21. In the
first stage, two subgroups for each source, A/B MSS, Steep SAR, Shallow SAR,
DEM, DSM, and DAM, were obtained by complete linkage. Two subgroups
provided the initial information which determined two initial cluster centers. After
applying the normalized clustering algorithm for the top down approach, the better
source was selected by comparing the evaluation function which was defined in
equation (2.5). Figure 5.19 shows the hybrid DTC resulting for multisource data.
MSS was selected as the best source in the first stage. There is one node which
has two subgroups. One subgroup consists of b, f, i, |,g. Another subgroup is t. In
the second stage, DEM was the best source. In the third stage, MSS was the best
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source for the left node and DEM was best for the right node. In the fourth stage,
MSS was selected for left node and DSM for right node. The DTC reduces the error
rate by 7.5 % over the single layer classifier when using A/B MSS, as tabulated in
Table 5.22

_Table 5.22 Multisource Data Result

Class A/BMSS’ Steep SAR Shallow SAR’ ||
Douglas-Fir 59.6 75.9 44.3
D-F + Logepole Pine 37.9 26.9 11.6
D-F + Cedar 43.1 18.9 20.1
Hemlock + Cedar 67.9 51.6 345
D-F + Other Species 0.1 74.6 15.3
Forest Clearings 5.1 67.7 241
Average 57.0 52.6 25.0 f
j e |
Class DAM' DEM’ DSM’ DTC
Douglas-Fir 12.3 44 .4 0 54.9
D-F + Logepole Pine 12.0 43.7 25.8 45.7
D-F + Cedar 82.1 0 0 43.4
Hemlock + Cedar 0 85.4 91.7 93.6
D-F + Other Species 29.0 95.9 43.2 86.9
Forest Clearings 0.5 22.2 17.4 62.3
Average 22.6 48.6 29.7 | 64.5

* The single layer classifier is applied.

5.7 Strategy for Feature Selection

Previously in Chapter 3, we introduced extended canonical analysis and
autocorrelation analysis as feature extraction methods and derived the risk function
of the classification accuracy in Chapter 4. When the number of training samples
are small, to minimize the risk function with a constraint to maximize the
Bhattacharyya distance, the dimensionality must be reduced while maximizing the
Bhattacharyya distance. Equation (4.48) showed that the best one feature in the
transformed coordinate should give the best results in a situation which has only
small numbers of training samples. We note that the above statements are
analytically probable only for two classes. In the following experiments, we will
demonstrate that the best one feature which has the maximum separability
produces the best performance.



Experiment 5.7.1
FLC-1 data which was used in Experiment 5.2.1 was used again in this experiment.
In transformed coordinates, the best single feature was extracted by canonical
analysis, since the mean difference between classes was dominant. Next features
in a transformed subspace were extracted by extended canonical analysis or
autocorrelation analysis because the mean difference became smaller in a
subspace. Therefore, added features are obtained from the extended canonical
analysis and autocorrelation analysis. In this experiment, the best single feature

produces the best result here as shown in Table 5.23 and 5.24.

Table 5.23 Extended
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Canonical Result (FLC-1
" Class 1’ 2 3 4 5 6 7 12 ﬂ
Alfalfa 88.6+ 76.2 73.0 75.4 68.4 63.4 54.2 9.0
Corn 97.0 96.5 96.3 96.8 98.8 98.2 98.5 81.8
Oats 92.0 96.0 96.2 95.4 93.2 89.6 88.0 81.7
Clover 88.5 91.6 92.8 90.0 89.9 89.8 74.2 37.1
Bean 85.9 83.1 72.1 74.7 73.8 74.7 71.6 70.9
Wheat 99.4 99.2 99.2 99.4 99.2 99.0 98.2 98.8
Soil 99.7 99.7 99.9 99.9 99.9 100 100 94.8
Rye 95.5 93.5 93.7 93.4 93.3 94.0 94.4 93.2
H Avg 93.3 92.0 90.4 90.6 90.0 88.6 84.9 71.0

* the number of features which is used at each node.

+ correct classification accuracy(%)

Table 5.24 Canonical-Autocorrelation Result (FLC-1)

" Class

1 2 3 4 5 6 7 12
Alfalfa | 886 | 800 | 607 | 383 | 353 | 255 | 283 | 9.0
Corn 97.0 | 956 | 96.2 | 955 | 97.0 | 97.8 | 965 | 81.8
Oats 920 | 859 | 891 | 778 | 741 | 71.7 | 706 | 817
Clover | 885 | 866 | 885 | 86.8 | 857 | 834 | 824 | 371
Bean | 859 | 736 | 61.6 | 70.1 | 732 | 654 | 622 | 709
Wheat | 99.4 | 998 | 99.4 | 996 | 996 | 99.6 | 996 | 988
Soil 99.7 | 100 | 100 | 999 | 99.9 | 99.9 | 999 | 948
Rye 955 | 969 | 99.4 | 986 | 98.7 | 96.9 | 984
| Avg | 933 | 89.8 | 86.8 | 83.3 | 829 | 800 | 79.7
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Experiment 5.7.2

For a high dimensional data test, ten classes of FSS data, the same as in
experiment 5.2.3, were selected again, and the same training and test sets were
used. The best single feature was extracted by canonical analysis since the mean
difference between classes was also dominant. Next features in a subspace were
extracted by extended canonical analysis. The smallest error rate was obtained

using the best single feature, as shown in Table 5.25.

Table 5.25 Extended Canonical Result (FSS)

“;Iass 1 2 3 4 5 10 20 30
a | 635+ | 592 | 574 | 571 | 56.4 | 579 | 47.3 | 2439
b 826 | 834 | 83.4 | 821 | 81.8 | 824 | 67.9 | 36.1
c | 675 | e85 | 685 | 683 | 71.3 | 58.7 | 57.7 | 69.0
d 413 | 441 | 446 | 481 | 452 | 4427 | 498 | 59.2
e 71.0 | 69.2 | 68.9 | 66.6 | 665 | 589 | 558 | 36.0 }
f 565 | 56.8 | 56.8 | 54.2 | 57.0 | 61.2 | 59.9 | 76.1
g 835 | 834 | 826 | 835 | 81.8 | 81.5 | 79.1 | 882
h 853 | 847 | 847 | 840 | 828 | 765 | 66.6 | 595
i 494 | 508 | 50.0 | 48.7 | 50.8 | 50.5 | 47.1 | 354
j 83.8 | 837 | 839 | 833 | 81.8 | 744 | 675 | 81.1

Avg [ 662 | 684 | 681 | 676 | 675 | 646 | 599 | 566

* the number of features which is used at each node.
+ correct classification accuracy(%)

As a result, the hybrid DTC has better classification accuracy than the maximum
likelihood Gaussian classifier and the other DTC's when the best single feature is

used at each node in the limited training sample situation.
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CHAPTER 6. CONCLUSIONS

The fundamental objective of this research was to develop a design procedure for
the DTC in a high dimensional data, large number of classes, limited training set
size environment. We have defined the following three methods: top down design,
bottom up design, and hybrid design. These methods are more simple and
effective than previous design methods. Three kinds of bottom up design methods
were described: single linkage, complete linkage, and dynamic linkage. In cases
where a bottom up approach is called for, any of the three might be useful, with a
perhaps slight preterence for the dynamic approach. Although all three approaches
were studied, the hybrid classifier was shown by empirical test to have the best
performance; this was expected because it reconciles a property of data (classes
being separable) and a property of the application (classes informational value).

The mathematical relationship between sample size, dimensionality, and risk value
was derived. The incremental error was shown to be simultaneously affected by
two factors, dimensionality and separability. For predicting the optimal number of
features, we conclude that the optimal number of features in transformed
coordinates is just one when only small numbers of samples are available. We
have demonstrated that the best result is obtained when we use just one feature
experimentally. Empirically, it was shown that a reasonable sample size is six to
ten times the dimensionality if the dimensionality and separability simultaneously
increase.

In the case of more than two classes, the ambiguity with respect to the optimal
number of features is wider and unpredictable. A binary hierarchical classifier may
solve the above drawbacks. Because only two groups are classified at each node
in a binary hierarchical classifier, a minimum error rate can be obtained when the
best single feature is used in transformed coordinates. Therefore, an overall
minimum error rate of a hierarchical classifier is obtained by minimizing the error
rate at each node. We are able to predict the optimum number of features and
obtain the minimum error rate when we use a binary hierarchical classifier.
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#include <stdio.h>
#include <math.h>
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Sum of Squared Error Clustering Program

* Cluster -- Multispectral Image Clustering Program
* Euclidean distance measure is used.
*  Specify NP,MXCH,num_chan (MXCH = num_chan).

* Use for BIL format.

*

#define NL
#define NP
#defin@ MXCH

#define MAXCENTERS
#define ELF olse if

180 /" #oflines "/

1 I # of pixels per line */
100 /* maximum number of channels */
2 /* maximum number of cluster centers */

#define c2f(n) (float){(n)&0377)

struct center {

float originfMXCH];

/* current cluster origin */

float mean[MXCH]; {* accumulated mean */
float sumsq[MXCH]}; /" sum of squares */
float count; /* number points currently in this cluster */

|5
struct center centers]MAXCENTERS];

int first_pass;

inttfli =0,
inttf2 =0
iMtt3 =0
int vilag = O;

int num_centers;
int num_chan=100;
long int num_diff;
int min_changes;
int num_passes;
int clneed = 0;

int input = 0;
int output = 0;
int sfd = O;
FILE *fopen(},*tp;

long int 10;
long int t1;
long int 12;
/.

1* flag to indicate first pass */
/* trace cluster main loop flag */
/* trace clasify */
/* trace 11O */
/* verbose flag */
/* number of cluster centers this run */
/* number of channals this run */
/* number of changes this pass */
/* minimum number of changes for completion */
/* number of passes until clusters converge */
/* number of clusters to be created */
/* input file descriptor */
/* output file descriptor */
/* stat file id */
/* initialize fp=0, cluster center file */

/* starting time */
/* time of start of current iteration */
/* time of end of current iteration */

* main -- supervisory control program
L]

*/

main(argc, argp)
char **argp,

min_changes = 0 ;

parse(argc, argp),

if (!p)

clinit(clneed);

time(&t0);



clump();
print_stats();
oxit(0});

}

/I
* clump -- main clustering loop
*

clump()
{

register i;

register float *ip1, “Ip2;
float *getpt(), n;

int j;

first_pass = 1;
num_passes = 0,
I.

min_changes *= NL*NP/100;
*/

num_diff = NL*NP;
do{
if(tf1)
print_stats();
min_changes = num_diff;
num_diff = 0;
rewind_files{);
for(i=0; i<num_centers; i++){
centers]il.count = 0.0;
tp1 = centers|i].mean;
fp2 = centers|i].sumsq;
for(j=0; j<num_chan; j++)
Hpl++ = *fp2++ = 0.0;

}
while((fp1 = getpt{input)) l= 0}
clasify(fp1);
/* compute new cluster centers: */
for(i=0; i<num_centers; i++){
fp1 = centers|i.mean;
for(j=0; jenum_chan; j++)
if(centers[i].count |= 0}
*fp1++ /= centers]i].count;
else
*fpl++ = *fp2++ =0.0;
fp1 = centers]i).origin;
fp2 = centers[i].mean;
for(j=0; j<num_chan; j++)
‘fol++ = "fp2++;
fp1 = centers[i].sumsq;
fp2 = centers|il.mean;
n = centers|i].count;
for(j=0; j<num_chan; j++){
ffin> 1)
*fp1 = (*fp1/(n-1)) - (V/(n-1)) * (“fp2 * *tp2);
else
*fp1 = 0.01;
Ipt++;
1p2++;
}

first_pass = 0;
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nrum _passes++;
oflush();
} while(num_diff < min_changes);
/.

} while(num_diff > min_changes);
'/ B
if(vilag)
fprintf(stderr, “clustering complets\n");

}

/.

clasnfy -- clasify a point and update cluster
center information
*f

clasify(pt)

float *pt;

{
register float *fp1, *{p2;
register int i;
float dist1, dist2, dist(};
int index;

index = 0;
fp2 = pt;
dist2 = dlst(cemers[O] origin, fp2);
for(i=1; icnum_centers; i++){
dist! = dlst(centers[l] origin, tp2);
if(dist1 < dist2) {
dist2 = disti;
index = i;

}

centers[index].count = centersfindex].count + 1.0;

/l

* add this point to current mean

*/

fp1 = centers[index].mean;

for(i=0; i<num_chan; i++)
fpl++ += "Ip2++;

/'

* accumulate sum of squares:

*

fp1 = centersfindex].sumsq;

fp2 = pt;

for(i=0; i<num_chan; i++){
“Iple+ += *fp2 * "Ip2;
fp2++;

}
if(t2)¢
printf("\nCenter %5d (%6.1f):\t\t", index+1, centers{index].count);
printl("%6.1f7\t", num_chan, pt);
printf("\nnew mean: Aft*);
printl("%8.2f\t", num_chan, centers[index].mean);
printf(™\n");

)
putpt(index});
/'
getp -- get a multispectral input point, and convert
it to a floating point vector
*/

char ibuf[MXCH][NP];
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char *ibp[MXCH] = ibuf{MXCH]J;
int nib = 0;

float *getpt(fd)
{

char buf{MXCHJ;

static float fbuf[MXCH];
register char *p;
register float *fp;
register int i;

fp - fbuf,
if(nib <= 0){
for(i=0; i<num_chan; i++){
if{{nib = read(fd, ibufi], NP)) <= 0){
if(tf3)
printf("EOF on input\n®);
return(0);

?bp[i] = ibuf[i];

for(i=0; i<num_chan; i++){
*fp++ = c2f(*ibp[il++);

b
nib--;
if(tf3){
printf("\nINPUT:\t\t");
printl("%8.0f", num_chan, fbuf);
printf("\n");
return(fbuf);
}
/'

* putpt -- output a clasified point
*/

char  obuf[NP];
char *obp = obuf;

int nob = 0;
putpt(n})
{
if(first_pass || *obp I= n}{
num_diff++;
}
if(13)
printf("OUTPUT:1%5d (%d)\n", n, *obp);
*obp++ = n;
if(++nob >= NPY{
write(output, obuf, nob);
if(Hirst_pass)
nob = read{output, obuf, NP);
Iseek(output, (long)(-nob), 1);
nob = 0;
obp = obuf;
}

}
oflush()
{
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if(nob)
write{output, obuf, nob);
}
/.
* dist -- compute distance between 2 points
*

float dist(fp1, fp2)
char *fp1, *ip2;
{

register float *p1, "p2;
register int i;
float sum, term;

p1 = (float*)fp1;

p2 = (float*){p2;

sum = 0;

for(i=0; i<num_chan; i++){
term = fabs(*p1++ - *p2++);
term *= term;
sum += term,

return(sum);

}
clinit(nc)

register i;

register float *fp1, *ip2;
float *pt, n;

int j;

/'

* clear everything:

*/

rewind_files();

n=00;

fp1 = centers[0].mean;

fp2 = centers[0).sumsq;

for(j=0; jenum_chan; j++)
“fpt++ = "fp2++ = 0.0;

/.
* now, accumulate mean & st. dev. for entire pix:
*/
while((pt = getpt(input)) 1= 0){
n+=1.0;
/.
* add this point to current mean
*/
fp1 = centers[0].mean;
fp2 = pt;

for(i=0; i<num_chan; i++)
*fpl++ +=*p2++;

/'

* accumulate sum of squares:

*

fp1 = centers[0].sumsq;

fp2 = pt;

for(i=0; i<num_chan; i++){
*fpl++ +="Ip2 * *ip2;
fp2++;



}

/n
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}

if{n < 2.0){
printf("input file is empty\n");
oxit(4);

/'

* now convert sum and sumsq to mean and st. dev,:
*/
fp1 = centers{0].mean;
for(i=0; i<num_chan; i++)
“tpl4++ /= n;
fp1 = centers[0].sumsq;
fp2 = centers[0].mean;
for(j=0; j<num_chan; j++){
"p1 = sqri((*fp1/(n-1)) - (n/(n-1)) * (*fp2 * *fp2));

fpl++;

fp2++;
/'
* now compute each of the new cluster centers:
*

fp1 = centers[0].mean;
fp2 = centers[0].sumsq;
for(j=0; j<nc; j++){
for(i=0; i<num_chan; i++){
centersfjl.origin[i] = fp1{i] + tp2[i] *
((-(ne/2.0))/(2*(nc-1)));

)
if(vilag)
fprintf(stderr,“cluster initialization complete\n®);

parse -- parse input arguments

int errors;

parse{argc, argp)
char **argp;

errors = 0;

if(arge == 1){
help();
exit();

}
while(--argc > 0){
argp++;
if(Istrnemp(*argp, "if=",3))
input = open{*argp+3, 0);
ELF (!strncmp(*argp, "of=",3))}
output = creat{*argp+3, 0644);
close(output);
output = open{*argp+3, 2);
} ELF (Istrncmp(*argp, "cf=",3}){
fp = fopen(*argp+3, "r");
} ELF (Istrncmp(*argp, "sf=",3)}{
std = open(*argp+3, 0);
} ELF (Istrncmp(*argp, "ne=",3)){
num_centers = atoi(*argp + 3);
clneed = num_centers;
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} ELF (Istrncmp(*argp, "pc=",3)}{
min_changes = atoi(*argp + 3);
} ELF (Istrncmp(*argp, "v",2))

vflag++;

ELF (Istrncmp(*argp, "-t1",3))
tH1++;

ELF (Istrncmp(*argp, ™27,3))
tf2++;

ELF (Istrncmp(*argp, "-t3",3))
ti3++;

else {
errors++;
printf("bad option: %s\n", *argp);

}

nesd(input, "input”, “if*);

nead(output, "output”, "of");

if(Icineed){
printf("\"nc=..\" (number of centers to create)in”);
eIrors++;

if(errors)
exit{1);
setup_files();

help()
{

printf("Summary of cluster parameters:\n\n®);
printf("if=... input data file\n");
printf("of=... output results file\n");
printf(“cf=... initial cluster center file\n");
printf("sf=... output statistics file\n");
printf("pc=.. percent change desired(0-100) \n") ;
printi("nc=nnn  number of centers to create\n™);
printf("option -t1 t2 -3 -vin");

}

/.

* noed -- see if a needed file is present

Y/

need(fd, fn, fi)

char *fn, *fi;

if(fd == O){
printf("required %s file (%s=...) missing\n", fn , 1i);
errors++;
}
}
,'

* setup_files -- read in once-only files & get ready to cluster
*/

setup_files()
{

int Lj;

/" output file */
if(fpX
for(i=0; i<num_centers; i++)
for(j=0; jenum_chan; j++)
fscanf(fp, "%{", &centersfi}.origin[i]);
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}

/l
* rewind_files -- rewind 1/O files, and prepare for another pass
*/

rewind_files()

Iseek(input, OL, 0);

Iseek({output, OL, 0);

if(first_pass){
nob = read(output, obuf, NP);
Isesk(output, OL, 0);

nob = 0;
obp = obuf;
}
}
/l
* print_stats -- output summary of clustering run
*/
print_stats()
register i;
register float *fp1, *ip2;
int j;
time(&t2);

printf("tNumber of passes = %d", num_passes);
printf("\n\tNumber of changes = %d\n\telapsed time = %ld / ",
num_diff, 12-t1);
printf("%Id\n", t2-10);
for(i=0; icnum_centers; i++){
printf("\n\ntCenter %d, (%5.1f points):\n", i+1, centers[i].count),
printf("\tOrigin:\t\t");
printl{(*%6.2f\", num_chan, centers[llongm)
printf("\n\tVariance:
printl(*%6.21\t", num_chan, centers[t] sumsaq);
printf(™\n");

}
}

printl(f, n, afp)

char *f;

int n;

float *afp;

{
register int i;
register float ‘ip;

fp = afp;
for(i=0; i<n; i++)
printi(f, “fp++);
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Appendix B Normalized SSE Clustering Program

#include <stdio.h>

#include <math.h>

/.

* Cluster -- Multispectral Image Clustering Program

* Normalized Euclidean Distance Measure is used.
*  Specify NP,MXCH,num_chan.(NL is for min_chan)
* Use for BIL format.

*/

#define NP
#define MXCH

#define MAXCENTERS
#define ELF else if

1  # of pixels per line */
11 /* maximum number of channels */
10 7 maximum number of cluster centers */

#define c2f(n) (float)((n)&0377)

struct center {

float originMXCH];
float mean[MXCH)];
float sumsq[MXCH];

float det;

* current cluster origin */
/* accumulated mean */
/* sum of squares */

float cov[MXCH][MXCH];
float inv]MXCH][MXCH]J;

float count;

}.

int first_pass;

inttft =0
inttfz =0,
inttf3 =0;
int vilag = 0;

int num_centers;
int num_chan=11,
long int num_diff;
int min_changes;
int num_passes;

int clneed = 0;

int input = 0;
int output = 0;
int sfd = 0;

FILE *fopen{),"mea,*co;

/* number points currently in this cluster */

struct center centers[MAXCENTERS];

/* flag to indicate first pass */
/* trace cluster main loop flag */
/* trace clasify */

/* trace 11O */

/* verbase flag */

/* number of cluster centers this run */

/* number of channels this run */

/* number of changes this pass */

/* minimum number of changes for completion */
/* number of passes until clusters converge */
/* number of clusters to be created */

/* input file descriptor */

/" output file descriptor */
/* stat file td */
/* initialize fp=0, cluster center fils */

float d1,d2,fac{[MXCH][MXCH];

long int t0;
long int t1;
long int t2;
/.

/* starting time */
/* time of start of current iteration */
/* time of end of current iteration */

* main -- supervisory control program
L]

Y

main{argc, argp)
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char **argp;

min_changes =0 ;
parse(argc, argp);

. if(Imea)
clinit{clneed);

time(&t0);
t1 = 10;
clump();
print_stats();
oxit(0);

}

/.

* clump -- main clustering loop

Y/

clump()

{

register i;

register float *fp1, *fp2,*{p3;
float *getpt(), n;
int jk;

first_pass = 1;

num_passes = 0;

num_diff = 1000*1000;

do{

if(tf1)
print_stats();
min_changes=num_diff;
num_diff = O;

rewind_files();

for(i=0; icnum_centers; i++)}
centers[i].count = 0.0;

fp1 = centersfi].mean;
fp2 = centers|i].sumsq;
for(j=0; j<num_chan; j++){
‘fpl++ = "Ip2++ = 0.0;
for(k=0; k<num_chan; k++)

centersfi].cov[j]k] = 0.0;

while((fp1 = getpt(input}) != 0)
clasify(fp1);

/* compute new cluster centers: */
for(i=0; i<num_centers; i++){
fp1 = centers{i].mean;
for(j=0; jenum_chan; j++){
if(centers[i}.count != 0)
*tp1++ /= centers|i].count;
else
*fol++ = 0.0;

fp1 = centers{i].origin;
fp2 = centers[i].mean;
for(j=0; jenum_chan; j++)
“ipl4+ = "1p2++;
n = centers|i].count;
for(j=0; j<num_chan; j++){
fin>1)
centersfi].sumsqlj] = centers[i].sumsqfj}/(n-1) -
(n/(n-1))*centers[i]. meanjj*centersi].mean(j];
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alse
centers[i].sumsq|j] = 0.01;
for(k=0; kenum_chan; k++){
if(n > 1)
centers[i].cov[j][k]=centers[il.cov[j[k}/(n-1) - (n/(n-1)) *
| centers[i].mean(j}'centers[i]. mean[k];
else
centers[i].covfjlfk]= 0.01;

lftds_(&num_chan,centers|i].cov,&num_chan,fac,&num_chan);

Ifdds_(&num_chan,fac,&num_chan,&d1,&d2);

centers|i].det=d1*pow(10.0,d2);;

linds_(&num_chan,centers|i].cov ,&num_chan,centers(il.inv,
&num_chan);

}
first_pass = 0;
NUM_pPasses++;
oflush();
/'
} while(num_diff > min_changes);
*/
} while(num_diff < min_changes);

if(vilag)
fprintf(stderr, “clustering complete\n”);
}
/.
* clasify -- clasify a point and update cluster
* center information

*/

clasify(pt)
float “pt;
{
' register float *fp1, *ip2,*p3;
register int i,j.k;
tloat distt, dist2, dist();
int index;

index = 0;
fp2 = pt;
dist2 = dist(centers[0).origin,centers[0].inv,
centers[0].det,{p2);
for(i=1; i<num_centers; i++){
dist! = dist(centers[i].origin,centers|il.inv,
centerslil.det,ip2);
if(dist1 < dist2) {
dist2 = disti;
index = i;

}

centers[index].count = centersfindex].count + 1.0;

* add this point to current mean
*
fpt = centers[index].mean;
for(i=0; i<num_chan; i++)
fpla+ += *1p2++,
e
* accumulate sum of squares:
*
fp1 = centers[index].sumsq;
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1p2 = pt;
for(i=0; i<num_chan; i++){
“fpl++ += *(fp2+1) * *(fp2+i);
for(j=0; jenum_chan; j++){
centers{index].cov(i][jj += *(fp2+i) * *(fp2+));

)
if(tf2){
printf("nCenter %5d (%6.1f):\M\t", index+1, centers[index].count);
print/("%6.1f\t", num_chan, pt};
printf("\nnew mean:\\t\t");
printl("%8.2f\t", num_chan, centers[index].mean);
| printf("\n");
putpt(index);

/.
* getpt -- get a multispectral input point, and convert
* it to a floating point vector

L

*/

char  ibufMXCH][NP];
char  *ibp[MXCH] = ibuf[MXCH]:
int nib = 0;

float *getpt(fd)

char buf[MXCH];

static float fbuf[MXCHJ;
register char *p;
register float *fp;
register int i;

fp = fbut;
if(nib <= 0){
for(i=0; i<num_chan; i++){
if((nib = read(fd, ibuf[i], NP)) <= 0){
if(t13)
printf("EOF on input\n®);
return(0);

?bp[i] = ibuf[i];

for(i=0; i<num_chan; i++){
*fp++ = c2f(*ibp[il++);

nib--;
if(tf3){
printf("\nINPUT Attt");
printl("%8.0f", num_chan, fbuf);
printf("\n");
}
return(fbuf);
)
/'

* putpt -- output a clasified point
*/

char  obuf[NP];
char *obp = obuf;
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int nob = 0;

putpt(n)
{

if(first_pass || "obp = n){
num_diff++;

}
if (113)
printf("OUTPUT:\%5d (%d)\n", n, *obp};
‘obp++ = n;
if(++nob >= NP){
write(output, obuf, nob);
if(Mfirst_pass){
nob = read(output, obuf, NP);
Iseek{output, (long)(-nob), 1);
}
nob = 0;
obp = obuf;
}
}
oflush()
if(nob)
write{output, obuf, nob);
}
/.

* dist -- compute distance between 2 points

*/

float dist(fp1.ip2,ip3,fp4)
float *fp1,1p2[MXCH][MXCH].fp3,'p4;
{

register float *p1,"p4;
register int i,j.k;
float sum,term1[MXCH],term2[MXCH];

p1 =fp1;
p4 = ip4;
sum = 0;
for(i=0; i<num_chan; i++){
term1{i} = fabs(*(p1+i) - *(p4+i));

for(i=0; i<num_chan; i++){
term2[i] = 0.0;
for(j=0; j<num_chan; j++){
term2(i] += term1[j] * fp2(illj];

sum +=term1[i}*term2[i};

sum += log(fp3);
return(sum);

clinit(nc)

{
register i;
register float *fp1, *fp2;
float *pt, n;
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int j;

,'

* clear averything:

*

rewind_files();

n=0.0;

fp1 = centers[0].mean;

fp2 = centers[0].sumsq;

for(j=0; jenum_chan; j++)
‘Ipl++ = *Ip2++ = 0.0;

l.

* now, accumulate mean & st. dev. for entire pix:

*/

while({pt = getpt(input)) = 0){
n+=1.0;
/.
* add this point to current mean
*/
fp1 = centers[0].mean;
fp2 = pt;
for(i=0; i<num_chan; i++)

‘fpl++ += "fp2++;
/‘
* accumulate sum of squares:
*/
fp1 = centers[0].sumsq;
ip2 = pt;
for(i=0; i<num_chan; i++){
‘fol++ += *fp2 * *ip2;

fp2++;
}
}
if(n < 2.0}
printf("input file is empty\n®);
exit(4);

}

It

* now convert sum and sumsq to mean and st. dev.:

*

fp1 = centers[0].mean;

for(i=0; icnum_chan; i++)
“ples /=

fp1 = centers[0].sumsq;

fp2 = centers[0].mean;

for(j=0; jenum_chan; j++){
*fp1 = sqri((*fp1/(n-1)) - (/(n-1)) * (*{p2 * *fp2));
fp1++;
fp2++;

}

/'

* now compute each of the new cluster centers:

*

fp1 = centers{0].mean;

fp2 = centers[0].sumsq;

for(j=0; jenc; j++}{
for(i=0; i<num_chan; i++){

centers|jl.origin(i] = fp1[i] + fp2[i] *
((-(ncr2.0))/(2* (nc-1)));

}
if(vflag)
fprintf(stderr,"cluster initialization complete\n”);
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}

/.
* parse -- parse input arguments

*/
int errors;

parse(argc, argp)
char **argp;

errors = 0;

if(argc == 1){
help();
exit();

}
while{--argc > 0){

argp++;

if(Istrncmp(*argp, "it=",3})
input = open(*argp+3, 0);

ELF (Istrncmp(*argp, "of=",3)){
output = creat(*argp+3, 0644);
close(output);
output = open(*argp+3, 2);

} ELF (Istrncmp{*argp, "cm=",3})){
mea = fopen(*argp+3, "r");

} ELF (Istrncmp(*argp, "cc=",3))
co = fopen(*argp+3, "r");

} ELF (Istrncmp(*argp, "sf=",3)){
sfd = open(*argp+3, 0);

} ELF (!strncmp(*argp, "nc=",3)}
num_centers = atoi(*argp + 3);
cineed = num_centers;

} ELF (Istrnemp(*argp, "pe=",3)}{
min_changes = atoi(*argp + 3);
} ELF (Istrncmp(*argp, "-v",2))

vilag++;
ELF (Istrncmp(*argp, "-t1,3))
ti1++;
ELF {!strncmp(*argp, "-12",3}))
2++;
ELF (Istrncmp(*argp, "-13",3))
tH3++;
else {
QIrors++;
printf("bad option: %s\n", "argp);
}

need{input, "input®, "if");

need(output, "output®, "of");

if(lcineed){
printf("\"nc=...\" (number of centers to create)\n");
errors++;

if(errors)

exit(1);
setup_files();

help()
{
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printf("Summary of cluster parameters;\n\n");

printf("if=... input data file\n");
printf("of=... output results file\n");
printf("cms=... initial cluster mean file\n");
printf("cca... initial cluster covar file\n*);
printf("sf=... output statistics file\n");

printf("pc=.. percent change desired(0-100) \n") ;
printf("nc=nnn  number of centers to create\n");
printf("option -t1 -t2 -t3 -vin");

/.

* need -- see if a needed file is present
*

need(fd, fn, fi)

char *fn, *f;

if(fd == 0){ 7
printf("required %s file (%s=...) missing\n", fn , fi);
errors++;

}

}
/'

* setup_files -- read in once-only files & get ready to cluster
*/

setup_files()
int ijk;

/* output file */
if(mea){
for(i=0; i<num_centers; i++){
for(j=0; j<num_chan; j++)
fscanf(mea, "%!", &centers]i].criginj));
for(k=0; kenum_chan; k++){
fscanf(co, “%{", &centers[i].cov{jlk]);
1

Iftds_(&num_chan,centers|i].cov,&num_chan,fac,&num_chan);
fdds_(&num_chan fac,&num_chan,&d1,&d2);
centersfi].det=d1*pow(10.0,d2);;

linds_(&num_chan,centers{i].cov ,&num_chan,centers[i].inv,

&num_chan);

I
}

/I
* rewind_{files -- rewind /O files, and prepare for another pass

i
rewind_files()

Iseek(input, OL, 0);
Iseek(output, OL, 0);
if{first_pass){
nob = read(output, obuf, NP);
Iseek({output, OL, 0);
nob = 0;
obp = obuf;
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* print_stats -- output summary of clustering run

*

print_stats()

}

register i;
register float *{p1, *fp2;
int j;

time(&t2);
printf("tNumber of passes = %d", num_passes);
printf("\n\tNumber of changes = %d\n\telapsed time = %Id / ,
num_diff, t2-t1);
printf("%id\n", 12-10);
for(i=0; l<num_centers; i++}{
printf("\n\ntCenter %d, (%5.1f points)\n”, i+1,
centers{i].count);
printf("tOrigin:\t\t");
printl(*%6.2f\t", num_chan, centers[i].origin);

printf("\n\tVariance: "%
printl("%6.2f\t", num_chan, centers[i].sumsq);
printf(™\n"});

for(j=0; j<num_chan; j++){
printl(*%6.2f ", num_chan, centers[i}.cov[jl);
printf("\n");

}
1 =12;

printl(f, n, afp)

char *f;
int n;

float *afp;

{

register int i;
register float *fp;

fp = afp;
for(i=0; i<n; i++)
printf(f, *fp++);






